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ABSTRACT 
 

This study investigates the flow, 
heat, and mass transport 
properties of Maxwell fluid over 
a stretched sheet of porous 
media. The partial differential 
conditions containing second-
order slip boundary conditions 
can be transformed into nonlinear ordinary differential conditions using proper similitude adjustments. It is possible to acquire numerical 
solutions for a set of transformed equations that were created from a physical model using the Runge-Kutta method with MATLAB programming. 
The implications of several other non-dimensional properties are also being studied. In fluid flow, many applied slip models are defined by 
researchers, like slip model (first-order also known as Maxwell slip model, the 1.5-order slip model, the FK model, and the second-order slip 
model. The wall's slip velocity boundary condition is created by adding the bulk velocity expansion to the wall collision molecules' tangential 
momentum transfer rate, which is then matched to the area's wall shear stress.  
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INTRODUCTION 
Due to its industrial applications, fluid flow and heat 

transmission in porous media have garnered a lot of attention in 
recent years, like filtration, purification, blood flow models, bio-
fluid, steel rolling, oil extraction, atomic power plants, the 
petroleum industry, and underground water resources, among 
others.1 Also, in the petroleum and geothermal industries, the 
transport qualities of fluid-saturated porous materials are critical. 
Natural porous materials like soil and cracked rocks are settled with 
fluid, which migrates and transports the fluid through the material 
under the effect of local pressure gradients. Scientists and 

researchers are interested in porous media not only because of their 
structure but also because numerous methods are being used to 
improve their efficiency and rate of heat transfer.2,3 One strategy for 
increasing the rate of heat transfer is to enhance fluid’s conducting 
qualities. In fluid flow problems, there are two types of slip 
circumstances to consider: slip condition and no-slip condition. A 
no-slip boundary condition states, when no relative motion exists 
between the walls and the fluid. However, this condition does not 
apply to all surfaces.  

Some surfaces, such as those affected by the flow of polymeric 
liquids, have liquids that slip against the walls. The slip condition, 
also known as the Navier condition, is extremely important in 
lubricating, medical-sciences, artificial heart valve polishing, and 
biological fluids. There was a lot of effort put forth by scholars on 
MHD fluid flow problems in slip situations. Ahmed et.al. explored 
the viscous flow problem of incompressible fluid on a stretched 
surface in a boundary layer.4 He classified the variable thermal 
conductivity suction parameter's effect on the field of temperature 
into two components: the specified temperature of surface and the 
advised heat flux5 of stretched surface. Aman et.al. investigated the 
influence of 2nd-order slip from MHD flow of a fractional Maxwell 
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fluid on a moving plate, two numerical approaches are compared, 
and a semi-analytical solution using the Laplace transform is 
provided.6 Bhargava et al. explained flow of micropolar fluid across 
a nonlinearly stretching-surface.7 Using a stretching sheet, Choi 
was a pioneer in the use of nanoparticles in nanofluids, having done 
so in the 1980s.8 

Cortell et.al. examined two cases of flow of viscous fluid across 
a non-linear stretching surface: the CST and the PST.9 Under slip 
conditions, Fang et.al. investigated the flow of 
magnetohydrodynamic (MHD) on a linear stretched surface 
contained in the porous material.10 Gangadhar et al. used 
computational approaches to investigate the effects of the influence 
of varied suction/injection and viscous dissipation on boundary 
layer flow. Gangadhar et al. used the spectrum relaxation method 
to analyse the characteristics of unsteady flow of nano-fluid 
boundary layer.11,12 

An investigation into the flow of magnetic hydrodynamic, a 
Jeffrey liquid using radially nonlinear stretched surface have been 
done.13 Newtonian and Joule heating are the two main types of heat 
transfer. An exponentially stretched sheet with slip conditions was 
studied by Hayat et al. in their study of unsteady MHD flow.14 
Jauhri and Mishra investigated the dual solution of boundary layer 
flow with mixed convection under second-order slip boundary 
conditions.15 Nano fluid boundary layer flow across a nonlinear 
permeable stretching sheet in case of partial slip conditions 
predetermined ambient temperature was numerically explored.16 

Kang et al. used to examine the enhancement of the thermal 
conductivity of nanofluid under a transient hot-wire, instead of the 
true volume the estimated volume of nanoparticles was employed.17 
Li Yi et al. studied the heat and mass transfer rates in MHD 
Williamson nanofluid flow across an exponentially porous surface 
by experimentation.18 Two alternative heat transfer conditions have 
been analyzed: Prescribed exponential order heat flux (PEST) and 
prescribed exponential order surface temperature (PEST). Rafique 
et al. examined the effects of radiation and Soret on a tilted stretchy 
sheet, which is the focus of this research.19 Brownian motion and 
thermophoretic effects are taken into account in Buongiorno's 
model. 

Gangadhar et. al. investigated the study of, mass transfer, heat 
transfer qualities in boundary layer motion about a stretched surface 
in a porous material equipped with Al2O3 (water-based nanofluids) 
and TiO2 (water), with variable suction or injection effects that were 
numerically examined.20 Three types of flows in porous material 
can be classified using the Reynolds number. Inertial effects 
predominate in the transition between the Darcy and Forchheimer 
regimes, which occurs when the laminar and nonlinear regimes 
meet, creating a rough range described by Zeng.21 The persistent 
MHD boundary layer zero motion point flow of an incompressible, 
dense, and electrically conducting liquid past an 
expanding/constricting sheet with the influence of an induced 
magnetic field is studied by Junoh.22 Heat conductivity was covered 
by Kang et al in numerical and exploratory investigation of 
nanofluids.17 Khanafer et al. analysed of the heat transfer behaviour 
of nanofluids inside a sealed space took high molecule scattering 
into account.23 Numerous people believe that nanotechnology will 
be one of the key forces behind the next significant mechanical 
revolution of this century, after the work of these innovators. It 

refers to the crucial mechanical front line being investigation at the 
moment. It aims to regulate the issue's subatomic structure with the 
goal of development in essentially every industry and open 
undertaking, such as organic sciences, physical sciences, hardware 
cooling, transportation, the earth, and national security, among 
others. On a stretching sheet of nanofluid, Khan & Pop numerically 
examined the laminar fluid flow problem on a flat surface.24 Over a 
stretching sheet, Kumaran et.al. studied on viscous incompressible 
flow.25 He used a quadratic polynomial of the distance from the slit 
to represent the velocity in his paper, and the sheet is subject to a 
linear mass flux. Kuznetsov & Nield performed an analytical 
analysis of the flow of a nanofluid past a vertical plate in a normal 
convective boundary layer.26 Moreover, describe the effects of 
thermophoresis and Brownian mobility. Malavandi et.al. studied 
various types of nanoparticles on a sheet that was contracting and 
expanding with a stagnation point flow.27 According to Merkin an 
exothermic surface reaction may be affected by a stagnation-point 
stream on an extended or contracting surface.28 The boundary 
parameter, which is an estimation, estimates the surface's velocity 
in relation to the external stream. Mishra et al29 explored the 
"Axisymmetric" stream of a viscous incompressible liquid over a 
narrowing vertical surface while taking into account the boundary 
conditions of first-order heat slip and second-order momentum 
slip.30 When there is a temperature difference between the sheet and 
the surrounding liquid, Mishra et al explanation of the boundary 
layer flow and heat transfer of an incompressible liquid along a 
vertical temperamental extending sheet in a tranquil liquid is 
introduced.30 Myers et.al. has experimentally shown the impact of 
various heat & mass transport parameters on nanofluid.31 Nadeem 
et al numerical study of the Maxwell fluid's heat transfer to a 
stretching sheet.32 With the base surface of the sheet being warmed 
by convection from a hot liquid, Ramesh et.al. consistently 
generated a 2D boundary layer stream of a thick, dusty fluid across 
a stretching sheet.33 The thermal effect of radiation and a magnetic 
field across an inclined vertical plate was studied by Reddy et al.34 
The equation of momentum for boundary layer flow across a 
stretching sheet was solved by Siddappa et.al. after researching the 
crane's flow problem in the visco-elastic fluid of Walter's liquid 
model.35 A porous medium over an impenetrable stretched surface 
with resistive heating and heat production or absorption was 
explored by Subhas et.al. along with the features of visco-elastic 
fluid flow and heat transmission.36 Wang looked into the crane's 
paper extension.37 He researched the precise solution to Navier 
Stokes' condition while working on the three-dimensional fluid 
movement on a plane boundary stretching sheet.37 

We want to concentrate on the impact of the previously 
unmentioned second-order velocity parameter (𝐿𝐿2), porosity 
parameter (𝑘𝑘𝑝𝑝), Deborah number (�̇�𝛽),), 𝑁𝑁𝑡𝑡-thermophoresis 
parameter on natural convection heat transfer and linear flow over 
a stretched sheet. 

 
Mathematical Formulation: 
Consider incompressible, steady MHD flows in two dimensions 

with slip condition and a Maxwell fluid stretching surface across a 
permeable medium. The heat transfer process is analyzed by 
viscous dissipation. The surface along the x-axis and 𝑦𝑦 > 0 is the 
confined region. The generated flow is linear, so the x-axis is 
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subjected to two forces that are equal yet opposite one 
another.𝑇𝑇∞  𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶∞ are the ambient temperature and concentration. 

 
 

 
Figure 1. Diagrammatic depiction of fluid flow in porous sheet 
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Subject to the ‘Boundary Conditions’ are 
 
  𝑢𝑢 = 𝑐𝑐′𝑎𝑎𝑎𝑎 + 𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝)
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𝑢𝑢 → 0
𝑇𝑇 → 0� 𝑎𝑎𝑎𝑎 𝑦𝑦 → ∞                                                                   (5) 

 
Here, 𝑢𝑢 (on x-direction) and 𝑣𝑣 (on y-direction) are velocity 
components, ‘𝛼𝛼𝑚𝑚 is the fluid's coefficient of thermal diffusion, 
′𝜐𝜐′ kinematic-viscosity, ‘𝑐𝑐′’ is arbitrary constant, ‘𝐷𝐷𝐵𝐵’ 
coefficient of Brownian diffusion and fluid stress parameter 
‘𝜏𝜏′ = (𝜌𝜌𝜌𝜌𝑝𝑝)𝑝𝑝

(𝜌𝜌𝜌𝜌𝑝𝑝)𝑓𝑓
, ratio between the adequate heat capacity of 

nanomaterial and fluid. 
𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝) is the slip velocity at the wall, which can be defined as, 
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Where, 𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑎𝑎 � 1
𝑘𝑘𝑛𝑛

, 1�, 𝛾𝛾 is molecular mean free path and ‘ 𝑎𝑎’ 
is momentum coefficient with 0 ≤ 𝑎𝑎 ≤ 1.Hence value of  ′𝑙𝑙’ is 
0 ≤ 𝑙𝑙 ≤ 1. The second term in 𝑢𝑢(𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝) condition is positive Since 
mean free path is always positive and 𝐴𝐴2 < 0. 
 
Transformed terms by using similarity variables with boundary 
conditions (1)-(4). 

 

𝜂𝜂 = 𝑦𝑦�
𝑎𝑎
𝜈𝜈𝑓𝑓

 

𝑢𝑢 = 𝑎𝑎𝑎𝑎𝑓𝑓′(𝜂𝜂) and 𝑣𝑣 = −�𝑎𝑎𝜈𝜈𝑓𝑓𝑓𝑓(𝜂𝜂)                                       (6) 
The non-dimensional temperature and concentration term by 
using similarity variables are 

𝜃𝜃(𝜂𝜂) = 𝜕𝜕𝑓𝑓−𝜕𝜕∞
𝜕𝜕𝑤𝑤−𝜕𝜕∞

,      

𝑇𝑇𝑓𝑓=𝑇𝑇∞ + 𝐴𝐴′𝑎𝑎 𝜃𝜃(𝜂𝜂)and                                                                           (7) 
 
Using equation (6) and (7) in equations (2) and (3). Following 
differential equations obtained, 
 
𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + ℇ2 − 𝑓𝑓′2 + �̇�𝛽(2𝑓𝑓𝑓𝑓′𝑓𝑓 − 𝑓𝑓𝑓𝑓2) − 𝑘𝑘𝑝𝑝𝑓𝑓′ =0           (8) 
1
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3

)θ′′ + 𝑓𝑓θ′ + Ec(kp𝑓𝑓′
2 + f′′2) = 0                              (9) 

 
Here  
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 is ‘Prandtl-Number’ 
Transformed ‘Boundary-Conditions’ are 

𝑓𝑓(0) = 𝑆𝑆 
𝑓𝑓′(0) = 𝑐𝑐 + 𝐿𝐿1𝑓𝑓′′(0) + 𝐿𝐿2𝑓𝑓′′′(0)

𝜃𝜃(0) = 1 + 𝛿𝛿1𝜃𝜃′(0)
�                                                (10) 
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� as η → ∞                                                                                      (11) 
 

Here 𝐿𝐿1 = �
𝑎𝑎
𝜈𝜈𝑓𝑓

, 𝛿𝛿1 = 𝑘𝑘𝜕𝜕�
𝑎𝑎
𝜈𝜈𝑓𝑓

, 𝛿𝛿2 = 𝑘𝑘𝐶𝐶�
𝑎𝑎
𝜈𝜈𝑓𝑓

are nondimensional 

slip parameter and 𝑆𝑆 > 0is for suction and 𝑆𝑆 < 0 is for injection. 
 
2.1 Nusselt Number: -Heat transfer across a fluid is 
characterised by the Nusselt number, which distinguishes 
between convectional and conductional modes of heat transfer. 
The Nusselt number is denoted by the following: 
 

𝑁𝑁𝑢𝑢 =
𝑎𝑎𝑞𝑞𝑤𝑤

𝑘𝑘(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞) 

Here, 
τw = µ �∂u

∂y
�, stress along the plate’s tangent.  

qw =  −k �∂T
∂y
� at y=0. 

 
𝑘𝑘=heat conduction coefficient.  
𝑎𝑎=characteristic length. 
With the help of Eq. (7) we get,𝑅𝑅𝑅𝑅𝜕𝜕 = 𝜕𝜕𝑤𝑤𝜕𝜕

𝜐𝜐
 (local Reynolds 

number).   𝑁𝑁𝜕𝜕

𝑅𝑅𝑅𝑅𝑥𝑥
1/2 = −𝜃𝜃′(0) Reduced Nusselt number 

respectively.  
 
 
 
 
 
Table 1: Comparison of the rate of heat transfer of wall  −𝜃𝜃′(0) for 
Newtonian fluids with various Pr values when �̇�𝛽 = 𝑘𝑘𝑝𝑝 = 𝐸𝐸𝑐𝑐=0. 
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�̇�𝜷 𝒌𝒌𝒑𝒑 −𝒇𝒇′′(𝟎𝟎)        -𝜽𝜽′(𝟎𝟎) 

0.1 0.1 1.1243 0.21373 
0.2 0.1 1.1454 0.20654 
0.3 0.1 1.1681 0.19286 
0.4 0.1 1.1835 0.18998 
0.5 0.1 1.2044 0.18876 

 
Table 2: -Numerical Values of −𝑓𝑓′′(0), -𝜃𝜃′(0) for different values of 
�̇�𝛽, 𝑘𝑘𝑝𝑝. 

Pr  Khan &  
Pop    
 (2010) 

 Malik et.     
  al. (2017) 

K. Gangadhar 
et.al  
(2019) 

Present 
Result 

0.7 0.4539 0.45392 0.45391616 0.45391 

2 0.9113 0.91135 0.91135768 0.91136 

7 1.8954 1.89543 1.89540326 1.89542 

20 3.3539 3.35395 3.35390414 3.35394 

 

RESULT AND DISCUSSION: 
In this article, flow of Maxwell fluid across a stretching surface 

was examined in relation to the impacts of the 2nd-order slip 
parameter velocity. To solve the differential equations (8)-(9) with 
equations (10-11), we employed the Runge-Kutta fourth-order 
approach. Physical parameters (for example, the porous parameter, 
the 1st  and 2nd order velocity slip parameters, the heat transfer slip 
parameter, and the Deborah number) have been extensively studied 
in order to fully comprehend their impact. A temperature and 
velocity profile graph and a local Nusselt number are used to depict 
the results of this study. To validate the method, the values of 
−𝜃𝜃'(0) obtained by the present system are compared to those 
published by Khan et al., Malik et al,38 and K. Gangadhar et al. for 
various values of Pr when �̇�𝛽 = 𝑘𝑘𝑝𝑝 = 𝐸𝐸𝑐𝑐=0. Table 1 and Table 2 
displays the comparison, which demonstrates an excellent match. 
Since the system has two solutions, they are referred to as the first 
solution and the second solution. It is clear from (11) and (12) that 
f "(0) and -𝜃𝜃'(0) measure the rate of heat transfer and skin-friction, 
respectively. In the boundary layer, f'(𝜂𝜂) and 𝜃𝜃(𝜂𝜂) measure, 
respectively, the fluid velocity and temperature distribution Figures 
2 and 3 show how the Deborah parameter '�̇�𝛽' influences dimension-
less velocity and temperature-profile. Velocity increases, and the 
temperature profile increases at some point after that, then 
decreases. Figures 4(a) and 4(b) and 5(a) and 5(b) show that 
increasing the second-order slip parameter increases the slip 
velocity and temperature profile due to a reduction in drag force 
and frictional heat generation. Figures 6 and 7 illustrate the effect 
of the stretching and shrinking parameter 'S' on the non-
dimensional temperature profile. It is noted that by increasing the 
value of 'S' while keeping the other variables constant, the 
temperature profiles decrease in magnitude. In figures 8 and 9, as 
the porosity parameter increased, the resistive force increased, 
generating friction heat; hence, the thermal profile increased while 
velocity decreased. Figure10 is illustrate Nusselt number effect on 
second order velocity slip parameter. Figures 11 and 12 illustrate 
the effect of the radiation parameter and Eckert number '𝐸𝐸𝜌𝜌 ' on the 

non-dimensional temperature profile. It is noted that by increasing 
the value of '𝐸𝐸𝜌𝜌 ' and 𝑅𝑅𝑑𝑑 the temperature profile increases in 
magnitude. 

 
Figure 2 is   velocity profile dual solution for different   �̇�𝛽 =0.1,0.3,0.5 
versus 𝜂𝜂 with Pr=0.7,𝑘𝑘𝑝𝑝 = .2,𝐸𝐸𝑐𝑐=0.1, 𝐿𝐿2 = 0.1  

 
Figure 3  dual solution of temperature profile for different  �̇�𝛽 
=0.2,0.4,0.6,0,8versus 𝜂𝜂 with Pr=0.7,𝑘𝑘𝑝𝑝 = .2,𝐸𝐸𝑐𝑐=0.1,𝐿𝐿2 = .1   

 
Figure 4(a) First Solution 
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Figure 4(b) Second Solution         

Figure 4(a) and Figure4(b)  represent dual solution of velocity 
profile for different  values of   𝐿𝐿2 =0.1,0.3,0.5 versus 𝜂𝜂 with 
Pr=0.7,𝑘𝑘𝑝𝑝 = .2,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 
                                                                                        

 
Figure 5(a) First Solution      

                
Figure 5(b) Second Solution 
 

Figure 5(a). and 5(b). represent velocity profile dual solution for 
various   𝐿𝐿2versus 𝜂𝜂 with Pr=0.7,𝑘𝑘𝑝𝑝 = .2,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1    

           
Figure 6. temperature profile for various values of 𝑆𝑆(> 0 )versus 𝜂𝜂    

with Pr=0.7,𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 
 

 
Figure 7. Temperature profile for various values of 𝑆𝑆(< 0)versus 𝜂𝜂 with  
Pr=0.7,𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 

 
Figure 8.  velocity profile for various values of 𝑘𝑘𝑝𝑝versus 𝜂𝜂with Pr=0.7, 
𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 
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Figure 9. temperature profile for various values of 𝑘𝑘𝑝𝑝versus 𝜂𝜂 with 
Pr=0.7,𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 
 

 
Figure 10. the variations in Nusselt number𝐿𝐿2 versus 𝑁𝑁𝑡𝑡   𝜂𝜂 with  
Pr=0.7,𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1 
 

                                                                
Figure 11. temperature profile for various values of 𝑅𝑅𝑑𝑑versus 𝜂𝜂 with  
Pr=0.7,𝐿𝐿2 = .1,𝐸𝐸𝑐𝑐=0.1, �̇�𝛽=0.1. 

 
 
Figure 12. Temperature profile for various values of 𝐸𝐸𝐶𝐶versus 𝜂𝜂 with 
Pr=0.7,𝐿𝐿2 = .1,𝑘𝑘𝑝𝑝=0.1, �̇�𝛽=0.1. 

CONCLUSION   
The Runge-Kutta method is used to examine the boundary layer 

flow of Maxwell fluid over a stretching surface in the presence of a 
porous media. The data is presented in graphs and tables, and the 
findings are consistent with previous research. Deborah number �̇�𝛽, 
porosity parameter 𝑘𝑘𝑝𝑝, Eckert number 𝐸𝐸𝑐𝑐, Prandtl number 𝑃𝑃𝑃𝑃 are 
all investigated in detail. Some of the most important findings from 
the aforementioned analysis are listed below. 

The following are some of the analysis's significant findings: 
I. As Deborah’s number and the second order slip parameter 

increase, velocity profiles increases, whereas velocity 
decreases as 𝑘𝑘𝑝𝑝 increase. 

II. The temperature profile rises in the first solution and 
decreases in the second solution as the 𝐿𝐿2, 𝑆𝑆 > 0, 𝑆𝑆 <
0 and increases as 𝑘𝑘𝑝𝑝increases. 

III. The temperature profile rises as 𝑅𝑅𝑑𝑑 and 𝐸𝐸𝜌𝜌 increases. 
IV. 𝑁𝑁𝑡𝑡 rises in first-half and decreases in second half as 𝐿𝐿2, 

increases. 

CONFLICT OF INTEREST  
Author declared no conflict of interest of any kind for         

publication of the article. 

REFERENCES AND NOTES 
1.  P. Surawattanawan, J. Chutikusol. Mathematical modeling and optimum 

design for capillary tubes in R-410A Air Conditioner. J. Integr. Sci. 
Technol. 2023, 11 (1), 403. 

2.  R. Kumar, M.P. Chaudhary, M.A. Shah, K. Mahajan. A mathematical 
elucidation of separation membrane operations and technology of chemical 
and physical processes: An advanced review. J. Integr. Sci. Technol. 2020, 
8 (2), 57–69. 

3.  R. Kumar, K. Mahajan, C.A. Igwegbe, et al. Chemical engineering of 
separation membrane, interfacial strategies, and mathematical modeling: a 
thorough analysis. J. Integr. Sci. Technol. 2021, 9 (2), 75–84. 

4.  N. Ahmad, N. Khan. Boundary layer flow past a stretching plate with 
suction and heat transfer with variable conductivity. Indian J. Eng. Mater. 
Sci. 2000, 7 (1), 51–53. 

5.  K. Govardhan, S. Muthuraja, A.N. Grace. Multiphysics modeling and 
optimisation of gas flow characteristics in a novel flow metric based gas 
sensing chamber with integrated heater. J. Mater. Nanosci. 2022, 9 (2), 
138–146. 



Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(2), 478        Pg  7 

6.  S. Aman, Q. Al-Mdallal, I. Khan. Heat transfer and second order slip effect 
on MHD flow of fractional Maxwell fluid in a porous medium. J. King Saud 
Univ. - Sci. 2020, 32 (1), 450–458. 

7.  R. Bhargava, S. Sharma, H.S. Takhar, O.A. Bég, P. Bhargava. Numerical 
Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching 
Sheet. Nonlinear Anal. Model. Control 2007, 12 (1), 45–63. 

8.  S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke. Anomalous 
thermal conductivity enhancement in nanotube suspensions. Appl. Phys. 
Lett. 2001, 79 (14), 2252–2254. 

9.  R. Cortell. Viscous flow and heat transfer over a nonlinearly stretching 
sheet. Appl. Math. Comput. 2007, 184 (2), 864–873. 

10.  T. Fang, J. Zhang, S. Yao. Slip MHD viscous flow over a stretching sheet - 
An exact solution. Commun. Nonlinear Sci. Numer. Simul. 2009, 14 (11), 
3731–3737. 

11.  K. Gangadhar. Radiation and viscous dissipation effects on laminar 
boundary layer flow nanofluid over a vertical plate with a convective 
surface boundary condition with suction. J. Appl. Fluid Mech. 2016, 9 (4), 
2097–2103. 

12.  K. Gangadhar, T. Kannan, G. Sakthivel, K. DasaradhaRamaiah. Unsteady 
free convective boundary layer flow of a nanofluid past a stretching surface 
using a spectral relaxation method. Int. J. Ambient Energy 2020, 41 (6), 
609–616. 

13.  T. Hayat, W.A. Khan, S.Z. Abbas, S. Nadeem, S. Ahmad. Impact of 
induced magnetic field on second-grade nanofluid flow past a convectively 
heated stretching sheet. Appl. Nanosci. 2020, 10 (8), 3001–3009. 

14.  T. Hayat, A. Shafiq, A. Alsaedi, S.A. Shahzad. Unsteady MHD flow over 
exponentially stretching sheet with slip conditions. Appl. Math. Mech. 
(English Ed. 2016, 37 (2), 193–208. 

15.  S. Jauhri, U. Mishra. Dual Solutions of EMHD Nanofluid at Stretching 
Sheet with Mixed Convection Slip Boundary Condition. Int. J. Heat 
Technol. 2021, 39 (6), 1887–1896. 

16.  K. Das. Nanofluid flow over a non-linear permeable stretching sheet with 
partial slip. J. Egypt. Math. Soc. 2015, 23 (2), 451–456. 

17.  H.U. Kang, S.H. Kim, J.M. Oh. Estimation of thermal conductivity of 
nanofluid using experimental effective particle volume. Exp. Heat Transf. 
2006, 19 (3), 181–191. 

18.  Y.-X. Li, M.H. Alshbool, Y.-P. Lv, et al. Heat and mass transfer in MHD 
Williamson nanofluid flow over an exponentially porous stretching surface. 
Case Stud. Therm. Eng. 2021, 26, 100975. 

19.  K. Rafique, H. Alotaibi, T.A. Nofal, et al. Numerical Solutions of 
Micropolar Nanofluid over an Inclined Surface Using Keller Box Analysis. 
J. Math. 2020, 2020, 1–13. 

20.  K. Gangadhar, T. Kannan, K. DasaradhaRamaiah, G. Sakthivel. Boundary 
layer flow of nanofluids to analyse the heat absorption/generation over a 
stretching sheet with variable suction/injection in the presence of viscous 
dissipation. Int. J. Ambient Energy 2020, 41 (9), 969–980. 

21.  Z. Zeng, R. Grigg. A Criterion for Non-Darcy Flow in Porous Media. 
Transp. Porous Media 2006, 63 (1), 57–69. 

22.  M.M. Junoh, F.M. Ali, N.M. Arifin, N. Bachok, I. Pop. MHD stagnation-
point flow and heat transfer past a stretching/shrinking sheet in a hybrid 
nanofluid with induced magnetic field. Int. J. Numer. Methods Heat Fluid 
Flow 2020, 30 (3), 1345–1364. 

23.  K. Khanafer, K. Vafai, M. Lightstone. Buoyancy-driven heat transfer 
enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. 
Heat Mass Transf. 2003, 46 (19), 3639–3653. 

24.  W.A. Khan, I. Pop. Boundary-layer flow of a nanofluid past a stretching 
sheet. Int. J. Heat Mass Transf. 2010, 53 (11–12), 2477–2483. 

25.  V. Kumaran, G. Ramanaiah. A note on the flow over a stretching sheet. 
Acta Mech. 1996, 116, 229–233. 

26.  A. V. Kuznetsov, D.A. Nield. Natural convective boundary-layer flow of a 
nanofluid past a vertical plate. Int. J. Therm. Sci. 2010, 49 (2), 243–247. 

27.  A. Malvandi, F. Hedayati, D.D. Ganji. Nanofluid flow on the stagnation 
point of a permeable non-linearly stretching/shrinking sheet. Alexandria 
Eng. J. 2018, 57 (4), 2199–2208. 

28.  J.H. Merkin, I. Pop. Stagnation point flow past a stretching/shrinking sheet 
driven by Arrhenius kinetics. Appl. Math. Comput. 2018, 337, 583–590. 

29.  P. Kaushik, U. Mishra. Numerical study due to mixed convection nanofluid 
flow with the effect of velocity slip and thermal conductivity across curved 
stretching surface. J. Integr. Sci. Technol. 2022, 10 (2), 73–78. 

30.  U. Mishra, G. Singh. Dual solutions of mixed convection flow with 
momentum and thermal slip flow over a permeable shrinking cylinder. 
Comput. Fluids 2014, 93, 107–115. 

31.  T.G. Myers, H. Ribera, V. Cregan. Does mathematics contribute to the 
nanofluid debate? Int. J. Heat Mass Transf. 2017, 111, 279–288. 

32.  S. Nadeem, R.U. Haq, Z.H. Khan. Numerical study of MHD boundary layer 
flow of a Maxwell fluid past a stretching sheet in the presence of 
nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45 (1), 121–126. 

33.  G.K. Ramesh, B.J. Gireesha, R.S.R. Gorla. Boundary layer flow past a 
stretching sheet with fluid-particle suspension and convective boundary 
condition. Heat Mass Transf. und Stoffuebertragung 2015, 51 (8), 1061–
1066. 

34.  P. Sudarsana Reddy, A.J. Chamkha, A. Al-Mudhaf. MHD heat and mass 
transfer flow of a nanofluid over an inclined vertical porous plate with 
radiation and heat generation/absorption. Adv. Powder Technol. 2017, 28 
(3), 1008–1017. 

35.  B. Siddappa, S. Abel. Non-Newtonian flow past a stretching plate. ZAMP 
Zeitschrift für Angew. Math. und Phys. 1985, 36 (6), 890–892. 

36.  A. Subhas, P. Veena. Visco-elastic fluid flow and heat transfer in a porous 
medium over a stretching sheet. Int. J. Non. Linear. Mech. 1998, 33 (3), 
531–540. 

37.  C.Y. Wang. The three-dimensional flow due to a stretching flat surface. 
Phys. Fluids 1984, 27 (8), 1915–1917. 

38.  A. Hussain, M.Y. Malik, M. Awais, T. Salahuddin, S. Bilal. Computational 
and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a 
stretching sheet. Neural Comput. Appl. 2019, 31, 425–433. 

 


	Received on: 24-Oct-2022, Accepted and Published on: 01-Dec-2022
	ABSTRACT
	Introduction
	Result and Discussion:
	Conclusion
	Conflict of Interest
	References and notes


