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ABSTRACT 
Automata are system modeling and analysis 
tools. By using an automaton, researchers model 
an abstraction of the behavior of a system so 
that they can derive the answer with desired 
analysis from it. The emphasis of this article is 
the use of automata as a modeling tool to 
model, simulate, and analyze nucleotide codon 
processing. There is enormous potential for 
mathematical and computational approaches 
that lead to fundamental insights and important 
practical validation of genetic biology research. 
Mathematical and computational approaches 
have been valued in physics, and have played an increasingly crucial role in chemistry over the past twenty years. Now, more and more genetic 
biologists and biochemists are interested in using automata theory applications and mathematical methods in their work. This work is meant to 
study automata theory on genetic code. The automaton for the functioning of nucleotide codons of RNA is defined here along with building of 
different RNA-based automata that give the same state. The results have been illustrated with examples and non-examples besides presentation 
of example of a module semi-automatic machine. 
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INTRODUCTION 
The fascinating area of computer science is called automata 

theory. Mathematicians started creating machines that theoretically 
and practically mimicked human characteristics to perform 
calculations more rapidly and accurately during the 20th century, 
and this is when it first took root. The term "automaton" itself refers 
to automatic procedures that carry out the creation of particular 
processes. In a nutshell, automata theory is concerned with the 
computational logic of so-called automata, which are small, simple 
machines. Automata theory is a growing area of theoretical study. 

It has practical uses in a wide range of fields, such as the study of 
computing behavior. The theory of automata can be used 
practically. Numerous real-world finite-state systems are described, 
such as games, puzzles, logical assertions in mathematics, real-time 
systems, distributed systems, error-correcting codes, etc.1-4 

Automata is used in Biology to examine a variety of 
characteristics of life, including DNA, pigments, and associated 
proteins. Ribo nucleic Acid (RNA) or Deoxy ribonucleic Acid 
(DNA) make up the genetic material of living things. 
Chromosomes, mitochondria, and chloroplasts all contain DNA. It 
functions as genetic material in many organisms that pass genetic 
information from one generation to the next.5-9 There are numerous 
studies reported giving a glimpse towards the recapitulation of 
well-known history and literature in this field.1-15 

DNA/RNA computation is a growing area that links the gap in 
the middle of automata theory and genetic code. Mathematics has 
been applied in biology for a long time. Several instructions and 
mathematical techniques are applied in the biological sciences. 
There are many techniques used in different scientific disciplines to 
analyze the sequences of DNA and its related RNA. One of these is 
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finite automata. Finite Automata can be recycled to analyze the 
sequences of DNA/RNA. In this article, we report the investigation 
of selected concepts of genetic algebra, in particular for application 
in genetic codes automation. 

PRELIMINARIES 
In this article, we attempt to explore DNA, RNA, and protein 

analysis using the approaches of mathematics and automata theory.  
A Semiautomata is a triple 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿) where 𝑄𝑄 and Σ are state 

and input sets and 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is called the state transition 
function. If 𝑄𝑄 and Σ are 𝑅𝑅-modules (with the same) and 𝛿𝛿 is an 𝑅𝑅-
homomorphism, then we called 𝑀𝑀 as a Module - Semiautomaton 
and abbreviate this by 𝑀𝑀𝑀𝑀𝑀𝑀 and is denoted by 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿)𝑅𝑅. 

A Finite Automata10 can be formally defined as a 5-tuple 𝑀𝑀 =
(𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) where 𝑄𝑄(≠ 𝜙𝜙) is a finite set of states, Σ is a finite 
non-empty set of inputs, 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is defined by 𝛿𝛿(𝑞𝑞0, 𝑎𝑎) = 𝑞𝑞1 
where 𝑞𝑞0, 𝑞𝑞1 ∈ 𝑄𝑄, 𝑎𝑎 ∈ Σ. 𝑞𝑞0 ∈ 𝑄𝑄 is the initial state, 𝐹𝐹 is the set of 
final states, and 𝐹𝐹 ⊆ 𝑄𝑄. Let Σ∗ be the collection of all finite strings 
over the alphabet Σ, including the empty string. The function 𝛿𝛿 
extends to a function 𝑄𝑄 × Σ∗ → 𝑄𝑄 (still denoted by 𝛿𝛿 ) in the 
following natural way: for every 𝑞𝑞 ∈ 𝑄𝑄 and 𝑠𝑠 ∈ Σ∗, we set 
𝛿𝛿(𝑞𝑞, 𝑠𝑠): = 𝑞𝑞 if 𝑠𝑠 is a empty string and 𝛿𝛿(𝑞𝑞, 𝑠𝑠): = 𝛿𝛿(𝛿𝛿(𝑞𝑞, 𝑧𝑧), 𝑎𝑎) if 
𝑠𝑠 = 𝑧𝑧𝑧𝑧 for some string 𝑧𝑧 ∈ Σ∗ and some letter 𝑎𝑎 ∈ Σ. A string 𝑥𝑥 is 
accepted by a finite state automata 𝑀𝑀 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) if 
𝛿𝛿(𝑞𝑞0, 𝑥𝑥) = 𝑝𝑝 for some 𝑝𝑝 ∈ 𝐹𝐹. A final state is also called an 
accepting state. The input is accepted when all input is read and 
matched by transitions and the automaton is in a final state. Also, 
the table which represents the list of transition functions (rules) of 
a finite automaton is called the transition table.10 

An Automata 𝑀𝑀 = (𝑄𝑄, Σ, Δ, 𝛿𝛿, 𝜆𝜆) is a system where 𝑄𝑄 is the set 
of states, Σ is the set of inputs, Δ is the set of outputs, 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 
is defined as state transition function and 𝜆𝜆: 𝑄𝑄 × Σ → Δ is defined 
as an output function respectively.14 

To find any alterations, additions, or deletions in genes or genetic 
material, finite automata are used for DNA/RNA pattern 
analysis.Finite automata have an advantage over random mutations, 
incorrect sequencing, incomplete data, or DNA specification.11 

RNA can be conceptualised mathematically as a string of the 
letters A, G, C, and U.The four bases give us 64 codons as distinct 
strings of length 3. The three strings UAA, UAG, and UGA, which 
have the function of stopping the biosynthesis process, are known 
as stop codons.Starting codon refers to the codon AUG that initiates 
translation.There are only 20 amino acids in DNA (or RNA), but 
64 codons make up the genetic code.9,15 The codons that code for 
hydrophobic amino acids can be followed by codons that code for 
hydrophilic amino acids in this manner.  

 This ordering of the 64 codons implicitly gives an ordering of 
the four RNA(or DNA ) bases. From which two orders of the base 
set {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈} and {𝑈𝑈, 𝐺𝐺, 𝐶𝐶, 𝐴𝐴} are obtained and further a sum 
operation is defined on these two ordered sets. The two sets are 
isomorphic to the cyclic group ℤ4. By considering the same order 
of bases, T. Ali and C. K. Phukan (2013)1 defined a product 
operation on the base set 𝑃𝑃 = {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}. With these two binary 
operations, the set 𝑃𝑃 fulfills the postulates of a commutative ring 
structure with an identity element.8,9,15,16 

 

Table 1: Operations on 𝑃𝑃 
+ 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈  ⋅ 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈 
𝐴𝐴 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈  𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 
𝐶𝐶 𝐶𝐶 𝐺𝐺 𝑈𝑈 𝐴𝐴  𝐶𝐶 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈 
𝐺𝐺 𝐺𝐺 𝑈𝑈 𝐴𝐴 𝐶𝐶  G 𝐴𝐴 𝐺𝐺 𝐴𝐴 𝐺𝐺 
𝑈𝑈 𝑈𝑈 𝐴𝐴 𝐶𝐶 𝐺𝐺  𝑈𝑈 𝐴𝐴 𝑈𝑈 𝐺𝐺 𝐶𝐶 

 
Ali and Phukan (2013)1 arranged all the codons in the genetic 

code table by using the Cartesian product of the ring 𝑃𝑃i.e.𝑃𝑃 × 𝑃𝑃 ×
𝑃𝑃 and denote it as 𝐶𝐶𝐺𝐺  i.e. 𝐶𝐶𝐺𝐺 = 𝑃𝑃 × 𝑃𝑃 × 𝑃𝑃 = {𝑥𝑥𝑥𝑥𝑥𝑥 ∣ 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈
{𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}}. A sum and product operations is defined between the 
codons in the following way 

 
𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑥𝑥′𝑦𝑦′𝑧𝑧′ = (𝑥𝑥 + 𝑥𝑥′)(𝑦𝑦 + 𝑦𝑦′)(𝑧𝑧 + 𝑧𝑧′)
𝑥𝑥𝑥𝑥𝑥𝑥 ⋅ 𝑥𝑥′𝑦𝑦′𝑧𝑧′ = (𝑥𝑥 ⋅ 𝑥𝑥′)(𝑦𝑦 ⋅ 𝑦𝑦′)(𝑧𝑧 ⋅ 𝑧𝑧′)  

with these two operations (𝐶𝐶𝐺𝐺, +,⋅) ≅ (ℤ4 × ℤ4 × ℤ4, +,⋅) 
 

The investigation of automaton structures, including transition 
tables, output tables, and state diagrams, in addition to some 
significant algebraic structures that naturally occur in the genetic 
code, is the primary driving force behind this work. 

In order to make the ring on the set of 64 codons isomorphic to 
the ring of integers modulo 64, a sum operation and a product 
operation were added to the set of codons.  i.e., (𝑍𝑍64, +,⋅). 

AUTOMATON DEFINED ON OPERATION OF CODONS 
Sanchez et. al.12 defined algebraic operations on genetic codes 

based on the DNA/RNA bases. They have defined a sum operation 
" +" on the sets of bases taking them in two different orders. With 
the ordered set of bases {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈} they have defined Primary 
algebra, and with the ordered set of base{𝑈𝑈, 𝐺𝐺, 𝐶𝐶, 𝐴𝐴} they defined 
the Dual algebra with the following operations12: 

 
Table 2: Operations on 𝑃𝑃 

Primal  Dual 
+ 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈  + 𝑈𝑈 𝐺𝐺 𝐶𝐶 𝐴𝐴 

𝐴𝐴 𝐴𝐴 𝐶𝐶 𝐺𝐺 𝑈𝑈  𝑈𝑈 𝑈𝑈 𝐺𝐺 𝐶𝐶 𝐴𝐴 

𝐶𝐶 𝐶𝐶 𝐺𝐺 𝑈𝑈 𝐴𝐴  𝐺𝐺 𝐺𝐺 𝐶𝐶 𝐴𝐴 𝑈𝑈 

𝐺𝐺 𝐺𝐺 𝑈𝑈 𝐴𝐴 𝐶𝐶  𝐶𝐶 𝐶𝐶 𝐴𝐴 𝑈𝑈 𝐺𝐺 

𝑈𝑈 𝑈𝑈 𝐴𝐴 𝐶𝐶 𝐺𝐺  𝐴𝐴 𝐴𝐴 𝑈𝑈 𝐺𝐺 𝐶𝐶 

 
This is also verified that these set of bases with the sum operation 

form additive abelian groups isomorphic to the group (ℤ4, +). In 
the genetic code tables above, they found that transitions and 
transversions are associated with changes in parity. It is assumed 
that the two arrays of the four base sets {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈} and {𝑈𝑈, 𝐺𝐺, 𝐶𝐶, 𝐴𝐴}, 
which reflect the biological relevance of its base codons, form two 
orders in the codon set. 

With the help of these four bases and the operations they have 
defined the 64 genetic codes and a sum operation on these genetic 
codes, and also verified that this set of 64 codons with that 
operation forms a group and is isomorphic to the additive abelian 
group (ℤ64, +).12 

Sanchez et. al.12 define the sum operation on the codon sets as 
follows: Let 𝑋𝑋1𝑋𝑋2𝑋𝑋3 and 𝑌𝑌1𝑌𝑌2𝑌𝑌3 are two codons to be added, then 
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the addition of the bases will be 1. In the order 3,1,2 and the bases 
will be added according to the sum table. 

If 𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑖𝑖 = 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑖𝑖 are previous in order to 𝑋𝑋𝑖𝑖  and 𝑌𝑌𝑖𝑖 in the 
ordered set of bases, then 𝑍𝑍𝑖𝑖 is written and the base 𝐶𝐶 (or 𝐺𝐺 for the 
dual group of bases) is added to the next position. 
1. For the last base pair only the sum 𝑍𝑍𝑖𝑖 is written. 

Let us take the sum of 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶, then we will add the bases 
in the order 𝑈𝑈 + 𝐺𝐺, 𝐶𝐶 + 𝐶𝐶, 𝐺𝐺 + 𝑈𝑈. Now 𝑈𝑈 + 𝐺𝐺 = 𝐶𝐶 and a 𝐶𝐶 will be 
added to 𝐶𝐶 + 𝐶𝐶. So we have (𝐶𝐶 + 𝐶𝐶) + 𝐶𝐶 = 𝐺𝐺 + 𝐶𝐶 = 𝑈𝑈 and lastly 
𝐺𝐺 + 𝑈𝑈 = 𝐶𝐶.12 Thus we have the sum as 

 
𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐶𝐶 + 𝐶𝐶)(𝐺𝐺 + 𝑈𝑈)(𝑈𝑈 + 𝐺𝐺) = 𝑈𝑈𝑈𝑈𝑈𝑈 

The cyclic character of the sum of codons is hereditarily derived 
from the base sum, while the order of significance of the bases in 
the codons is emphasized in the mandate to establish the sum 
algorithm. 

In our work, we tried to represent this concept with the help of 
automata. We represented the sum operation of the codons with the 
help of a two-state automata 𝑀𝑀 = (𝑄𝑄, Σ, Δ, 𝛿𝛿, 𝜆𝜆) where 𝑄𝑄 =
{𝑞𝑞0, 𝑞𝑞1}Σ = {𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺,
𝐺𝐺𝑈𝑈,𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈}, Δ = {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}𝑞𝑞0 is the initial state, 𝑞𝑞1 is 
the final state. the state transition function 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is defined 
in the Table 3. 

 
Table 3: Transition Table 

 
 
the output function 𝜆𝜆: 𝑄𝑄 × Σ → Δ is defined in the Table 4 . 
 
Table 4: Output Table 

 
 

 
 
 
 
 
 
Figure 1: State diagram 
 
In this automaton, if we give input 𝑋𝑋𝑋𝑋 of length 2 in the state 𝑞𝑞𝑖𝑖 

then first we add 𝑋𝑋 + 𝑌𝑌 by using the base table. Here we have two 
cases: 

Case 1: 𝑋𝑋 + 𝑌𝑌 results in an element previous in order in the tables 
then 𝑞𝑞0 will transit to 𝑞𝑞1 or there will be a loop at 𝑞𝑞1 with the 
corresponding output. 

Case 2: 𝑋𝑋 + 𝑌𝑌 results in an element later in order in the tables 
then we will get a loop at 𝑞𝑞0 or 𝑞𝑞1 will transit to 𝑞𝑞0 with the 
corresponding output. 

With these operations defined above, we now define the sum of 
the codons as follows 

 

𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑋𝑋′𝑌𝑌′𝑍𝑍′ = 𝜆𝜆(𝛿𝛿(𝑞𝑞0, 𝑍𝑍𝑍𝑍′), 𝑋𝑋𝑋𝑋′)𝜆𝜆(𝛿𝛿(𝛿𝛿(𝑞𝑞0, 𝑍𝑍𝑍𝑍′), 𝑋𝑋𝑋𝑋′), 𝑌𝑌𝑌𝑌′)𝜆𝜆(𝑞𝑞0, 𝑍𝑍𝑍𝑍′) 
 
Example 3.1. Let us consider the sum of the codons AGC and UGU. 
Then the sum operation we have defined, will give us 
 
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜆𝜆(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴)𝜆𝜆(𝛿𝛿(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴), 𝐺𝐺𝐺𝐺)𝜆𝜆(𝑞𝑞0, 𝐶𝐶𝐶𝐶) 
From the transition and output tables we have, 
For𝜆𝜆(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝜆𝜆(𝑞𝑞0, 𝐶𝐶𝐶𝐶) = 𝐴𝐴 For 𝜆𝜆(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴), we have 
𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶) = 𝑞𝑞1, and 𝜆𝜆(𝑞𝑞1, 𝐴𝐴𝐴𝐴) = 𝐴𝐴, so 𝜆𝜆(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴) = A. For 
𝜆𝜆(𝛿𝛿(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴), 𝐺𝐺𝐺𝐺), 𝛿𝛿(𝑞𝑞1, 𝐴𝐴𝐴𝐴) = 𝑞𝑞1, and 𝜆𝜆(𝑞𝑞1, 𝐺𝐺𝐺𝐺) = 𝐶𝐶, so 
𝜆𝜆(𝛿𝛿(𝛿𝛿(𝑞𝑞0, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴), 𝐺𝐺𝐺𝐺) = 𝐶𝐶. Finally, we obtained 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑈𝑈𝑈𝑈𝑈𝑈 =
𝐴𝐴𝐴𝐴𝐴𝐴. 
 
Example 3.2. We consider another example, 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶, and 
evaluate the sum as follows 
 
𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜆𝜆(𝛿𝛿(𝑞𝑞0, 𝑈𝑈𝑈𝑈), 𝐶𝐶𝐶𝐶)𝜆𝜆(𝛿𝛿(𝛿𝛿(𝑞𝑞0, 𝑈𝑈𝑈𝑈), 𝐶𝐶𝐶𝐶), 𝐺𝐺𝐺𝐺)𝜆𝜆(𝑞𝑞0, 𝑈𝑈𝑈𝑈)

= 𝜆𝜆(𝑞𝑞1, 𝐶𝐶𝐶𝐶)𝜆𝜆(𝛿𝛿(𝑞𝑞1, 𝐶𝐶𝐶𝐶), 𝐺𝐺𝐺𝐺)𝐶𝐶 = 𝑈𝑈𝑈𝑈(𝑞𝑞0, 𝐺𝐺𝐺𝐺)𝐶𝐶
= 𝑈𝑈𝑈𝑈𝑈𝑈 

∴ 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑈𝑈𝑈𝑈𝑈𝑈 
 
In our study, we have considered the primal base set for all these 

operations with 𝑞𝑞0 as the initial state and 𝑞𝑞1 as the final state. While 
studying these we observed that the outputs at 𝑞𝑞1 are actually 
following the sum operation of the dual base sum table. We also 
observed that when we consider the automata with respect to the 
dual base set, the same automata can represent the operations on 
this set with 𝑞𝑞1 as the initial stage and 𝑞𝑞0 as the final stage. 

 

MODULE SEMIAUTOMATA DEFINED ON GENETIC CODES 
A well-designed automata skeleton can perform mundane and 

unnecessary manual tasks with speed and efficiency, reducing the 
test cost of maintenance with lower risks. In this portion, we give 
certain automata/discrete dynamical systems a new idea about 
genetic codon. We are striving to adapt automata that must go 
through the properties of the DNA/RNA sequence in genetic 
biology. 

 

DIFFERENT AUTOMATA ON BASE SET OF RNA GIVES SAME STATES 
We consider a finite state automata𝑀𝑀1 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) where, 

𝑄𝑄 = Σ = Base set of RNA i.e. {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}, 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is defined 
in the Table 5, 𝑞𝑞0 = 𝐴𝐴 is the initial state of the automata, 𝐹𝐹 = 𝐺𝐺 is 
the final state of the automata. 

 
Table 5: Transition Table 
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Figure 2: State diagram 

 
 

We consider a finite state automata 𝑀𝑀2 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) where, 
𝑄𝑄 = Base set of RNA i.e. {𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}, Σ =
{𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺, 
𝐺𝐺𝐺𝐺,𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈}, 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is defined in the Table 6, 𝑞𝑞0 =
𝐴𝐴 is the initial state of the automata, 𝐹𝐹 = 𝐺𝐺 is the final state of the 
automata. 
 
Table 6: Transition Table 

 
State diagram is shown in Figure 3. 
 
We consider a finite-state-automata 𝑀𝑀3 = (𝑄𝑄, Σ, 𝛿𝛿, 𝑞𝑞0, 𝐹𝐹) where, 

𝑄𝑄 = Base set of RNA i.e.{𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈}, Σ = Base triplet set of RNA 
of length 3, 𝛿𝛿: 𝑄𝑄 × Σ → 𝑄𝑄 is defined in the Table 6, 𝑞𝑞0 = 𝐴𝐴 is the 
initial state of the automata, 𝐹𝐹 = 𝐺𝐺 is the final state of the automata. 

 

 
Figure 3: State diagram of 𝑀𝑀2 

 
Table 7: Transition Table 

 
 

We considered four disjoint subsets of the set of codons after 
studying the transition table as follows 
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𝛼𝛼 = {𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶,𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺,
𝐺𝐺𝐺𝐺𝐺𝐺, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈} 

𝛽𝛽 = {𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺,
𝐺𝐺𝐺𝐺𝐺𝐺, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈} 

𝛾𝛾 = {𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺,
𝐺𝐺𝐺𝐺𝐺𝐺, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈}\ 

𝜂𝜂 = {𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐺𝐺𝐺𝐺𝐺𝐺,
𝐺𝐺𝐺𝐺𝐺𝐺, 𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈𝑈𝑈, 𝑈𝑈𝑈𝑈𝑈𝑈} 

 
The state diagram of 𝑀𝑀3 is shown in Figure 4. 

 
Figure 4: State diagramof 𝑀𝑀3 

 
We construct three deterministic finite automata taking inputs as 

a single length, double-length, and triple length from RNA base set. 
Here we observe that if we input any string of length multiples of 6 
in the above three different automata we get the same state. 

 
Example 4.1. We consider two 𝑅𝑅𝑅𝑅𝑅𝑅 sequences i.e. 
CCAAAGUUAAUU, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
We have 𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) according to 𝑀𝑀1 as follows 
𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐶𝐶), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

= 𝛿𝛿(𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝐶𝐶), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐺𝐺), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝑈𝑈), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
= 𝛿𝛿(𝛿𝛿(𝑈𝑈, 𝑈𝑈), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴), 𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴), 𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝑈𝑈), 𝑈𝑈) = 𝛿𝛿(𝐶𝐶,𝑈𝑈)
= 𝐴𝐴 

According to 𝑀𝑀2 we have for 𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) as follows 
𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴𝐴𝐴), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴𝐴𝐴), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝑈𝑈𝑈𝑈), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴𝐴𝐴), 𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝐺𝐺, 𝑈𝑈𝑈𝑈) = 𝐴𝐴) 

And 𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) with respect to 𝑀𝑀3 is 
𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

= 𝛿𝛿(𝛿𝛿(𝐺𝐺, 𝐴𝐴𝐴𝐴𝐴𝐴), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
= 𝛿𝛿(𝛿𝛿(𝐴𝐴,𝑈𝑈𝑈𝑈𝑈𝑈), 𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛿𝛿(𝐺𝐺, 𝐴𝐴𝐴𝐴𝐴𝐴) = 𝐴𝐴 

 
Also, we have 𝛿𝛿(𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) relative to 𝑀𝑀1,𝑀𝑀2 and 𝑀𝑀3 
respectively 
(𝛿𝛿(𝐴𝐴 , 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐴𝐴), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

= 𝛿𝛿(𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
= 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐶𝐶), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝐺𝐺), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝑈𝑈, 𝐺𝐺), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝐺𝐺), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝛿𝛿(𝛿𝛿(𝑈𝑈, 𝐶𝐶), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
= 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝑈𝑈), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) = 𝛿𝛿(𝛿𝛿(𝑈𝑈, 𝐺𝐺), 𝑈𝑈𝑈𝑈𝑈𝑈)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝑈𝑈), 𝐺𝐺𝐺𝐺) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐺𝐺), 𝐶𝐶) = 𝛿𝛿(𝐺𝐺, 𝐶𝐶)
= 𝑈𝑈 

𝛿𝛿(𝐴𝐴, &𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐴𝐴𝐴𝐴), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝐺𝐺𝐺𝐺), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝐺𝐺𝐺𝐺), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝛿𝛿(𝐴𝐴,𝑈𝑈𝑈𝑈), 𝑈𝑈𝑈𝑈𝑈𝑈)
= 𝛿𝛿(𝛿𝛿(𝐶𝐶, 𝑈𝑈𝑈𝑈), 𝐶𝐶) = 𝛿𝛿(𝐺𝐺, 𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

𝛿𝛿(𝐴𝐴&𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝛿𝛿(𝑈𝑈, 𝐺𝐺𝐺𝐺𝐺𝐺), 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) = 𝛿𝛿(𝛿𝛿(𝐴𝐴, 𝑈𝑈𝑈𝑈𝑈𝑈), 𝐺𝐺𝐺𝐺)
= 𝛿𝛿(𝐴𝐴, 𝐺𝐺𝐺𝐺) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

Example 4.2.(Example of Module-Semiautomata) We consider 
Semiautomata𝑀𝑀 = (𝐶𝐶𝐺𝐺, 𝑃𝑃, 𝛿𝛿)𝑃𝑃 which is a Module-Semiautomata 
because 

(a) 𝐶𝐶𝐺𝐺  is a module over 𝑃𝑃, Since 𝐶𝐶𝐺𝐺 = ℤ4 × ℤ4 × ℤ4 is the set of 
all 64 codons, 𝑃𝑃 = ℤ4 is the set of all four bases 𝐴𝐴, 𝐶𝐶, 𝐺𝐺, 𝑈𝑈. 
Considering (𝐶𝐶𝐺𝐺, +) = (ℤ4 × ℤ4 × ℤ4, +) is an additive abelian 
group and (𝑃𝑃, +,⋅) = (ℤ4, +,⋅) is a commutative ring with 𝑓𝑓: ℤ4 ×
(ℤ4 × ℤ4 × ℤ4) → ℤ4 × ℤ4 × ℤ4 i.e. 𝑓𝑓: 𝑃𝑃 × 𝐶𝐶𝐺𝐺 → 𝐶𝐶𝐺𝐺 is such that 
𝑓𝑓(𝑎𝑎, 𝑢𝑢) = 𝑎𝑎𝑎𝑎 = 𝑢𝑢𝑢𝑢, ∀𝑎𝑎, 𝑏𝑏 ∈ 𝑃𝑃 = ℤ4, 𝑢𝑢, 𝑣𝑣 ∈ 𝐶𝐶𝐺𝐺 with the following 
properties (i) 𝑎𝑎(𝑢𝑢 + 𝑣𝑣) = 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎, (ii) (𝑎𝑎 + 𝑏𝑏)𝑢𝑢 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏, (iii) 
(𝑎𝑎𝑎𝑎)𝑢𝑢 = 𝑎𝑎(𝑏𝑏𝑏𝑏), (iv) 1𝑢𝑢 = 𝑢𝑢 Together satisfies all the conditions 
of a module structure on 𝐶𝐶𝐺𝐺  over 𝑃𝑃. 

(b) 𝑃𝑃 is a module over 𝑃𝑃, Since (𝑃𝑃, +) = (ℤ4, +) is an additive 
abelian group and (𝑃𝑃, +,⋅) = (ℤ4, +,⋅) is a commutative ring with 
𝑔𝑔: ℤ4 × ℤ4 → ℤ4i.e.𝑔𝑔: 𝑃𝑃 × 𝑃𝑃 → 𝑃𝑃 is such that 𝑔𝑔(𝑏𝑏, 𝑡𝑡) =
𝑏𝑏𝑏𝑏, ∀𝑏𝑏, 𝑐𝑐, 𝑡𝑡, 𝑠𝑠 ∈ 𝑃𝑃 = ℤ4 with the following properties 

(i) 𝑏𝑏(𝑡𝑡 + 𝑠𝑠) = 𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏, ( ii) (𝑏𝑏 + 𝑐𝑐)𝑡𝑡 = 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐, (iii) (𝑏𝑏. 𝑐𝑐). 𝑡𝑡 =
𝑏𝑏. (𝑐𝑐. 𝑡𝑡), ( iv )1𝑡𝑡 = 𝑡𝑡 Together satisfies all the conditions of a 
module structure on 𝑃𝑃 over 𝑃𝑃 

(c) 𝛿𝛿: (ℤ4 × ℤ4 × ℤ4) × ℤ4 → ℤ4 × ℤ4 × ℤ4i.e.𝛿𝛿𝐶𝐶𝐺𝐺 × 𝑃𝑃 → 𝐶𝐶𝐺𝐺 
defined by 𝛿𝛿(𝑞𝑞, 𝑎𝑎) = 𝑞𝑞, ∀𝑞𝑞 ∈ 𝐶𝐶𝐺𝐺, 𝑎𝑎 ∈ 𝑃𝑃 is a ring homomorphism. 

Hence, 𝑀𝑀 = (𝐶𝐶𝐺𝐺, 𝑃𝑃, 𝛿𝛿)𝑃𝑃 is a Module-Semiautomata. 

CONCLUSION 
In this article, the authors have presented the genetic biological 

coding in the form of automata i.e. the authors have studied 
automata for codons in genetic biology, because the relevant codon 
properties have enabled us to build a genetic codon structure that is 
isomorphic to the algebraic structures. In this article, the authors 
defined automata on the operation of codons of DNA or RNA 
nucleotides. We attempted to construct different automata on a base 
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set of RNA which gives the same state. Also, we introduce an 
example of Module-Semiautomata. 
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