
Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 1

J. Integr. Sci. Technol. 2023, 11(1), 457 . Article .

Journal of Integrated

SCIENCE & TECHNOLOGY

Software reliability prediction and optimization using machine learning
algorithms: A review
Neha Yadav1,2*, Vibhash Yadav3

1KIET Group of Institutions, Delhi NCR, Ghaziabad, India. 2Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India.
3Rajkiya Engineering College, Banda, India

Submitted on: 06-Oct-2022; Accepted and Published on: 01-Dec-2022

ABSTRACT
Software reliability is an important part while
evaluating software quality. Many challenges are
faced while developing highly reliable software such
as its usability, performance, service, and
maintenance, etc. Prediction and optimization of
reliability estimation procedure is performed by
optimizing parameters of the model. Several
traditional models are existing to evaluate the
reliability of the model, but it is quite difficult to directly estimate optimal parameters. Therefore, researchers adopted intelligent prediction and
optimization algorithms for software reliability check. But still there a lot of limitations that needed to be focused and solved. In this paper, a
detailed study is presented for software reliability prediction using machine learning. The paper also presents an analytical analysis for software
reliability prediction.

Keywords: Software Reliability; Quality; Intelligent Prediction; Machine Learning.

INTRODUCTION
Generally, in technical terms, reliability is the probability. It

guarantees that a product or system in a defined environment will
function properly for a set amount of time. As computer programs
pervade every aspect of modern life, each breakdown of those
programs has an influence on human beings. The production of
high-quality software systems that meet user expectations is a
critical challenge in the development of such software systems.
Developers seek to evaluate the reliability of their software as part
of software engineering process and review the actual degree of
reliability with the product's previous record. If a software gives
reliable performance, the system experiences less failure with
time.1

This distribution is described by software reliability models that
have been modified to data from a software development process.

When a strategy has proven a strong match to the data, it could be
used to determine the software's real dependability and predict
future dependability. The issue was whether software applications
has became sufficiently sophisticated and computer programmers
are not any more able to adequately test the program to ensure that
it functions correctly. These could be owing to assertions
implemented by different software reliability theories, or it could
have been due to the interdependence of subsequent programmed
executions. The extent whereby the project's inner structure has
indeed been influenced, as well as the type of the activities done for
executing continuation, impact the probabilistic dependence of
following existing systems.2

Recognizing techniques or linkages that can be utilized to assess
the value of software products more precisely while visiting a
substantial percentage of their conceivable states to address these
problems. Considering the connections between the breakdowns.
However, in some implementations, no approach is sufficiently
reliable.

Most techniques to modelling software dependence and
reliability, such as parametric framework, non-linear time series
analysis, and information retrieval, have lately been investigated.3,4
Several studies indicate to the use of computer vision advances to
aid human programmers in the design of software systems by
managing various forms of unpredictability seen in software

*Corresponding author: Neha Yadav, KIET Group of Institutions,
Ghaziabad, India
Email: nehayad564@gmail.com

Cite as: J. Integr. Sci. Technol., 2023, 11(1), 457.
URN:NBN:sciencein.jist.2023.v11.457

©Authors, ScienceIN ISSN: 2321-4635
http://pubs.thesciencein.org/jist

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 2

systems. In modelling intricate models and assist on taking decision
and predicting things in dynamic settings, because of the infrequent
and unanticipated development of errors and not sufficient data or
erroneous data. To attain robustness, predictive validity, and lower
costs, these AI methods are increasing collections of methodologies
that allow error, ambiguity, and half-truth. Fuzzy logic, NN, GA
(Genetic algorithm), genetic programming, are one of the most
important core methods.

In most cases, the dependability prediction method is divided
into two parts. The first portion is referred to as the training phase,
while the second is referred to as the prediction stage. The
prediction model is built in the initial step of training, and it uses
methods level or class level software metrics with fault information
connected with all the components of software programmes.
Subsequently, the very same approach is used to anticipate fault
proneness in the following version of the software. By utilising
metrics associated with fault data, classification techniques are used
to designate classes as fault-free or faulty. Fault prediction models
are used to locate defective classes in software, which improves
software quality. The model methodology,5 as well as metrics,6 are
influenced by the model performance. Many academics have
developed and approved ML and statistical approaches for
improving the performance of dependability prediction models
using datasets, metrics, and feature reduction methodologies. The
software quality is improved by locating faulty.

SOFTWARE DEFECT PREDICTION
In this paper, software defect predictions are presented using

machine learning and optimization approaches. For this a
systematic critical analysis is presented, as presented in figure 1.

Figure 1. Approach for Systematic Meta-Analysis

Unintentionally, software flaws are created throughout the

coding process of programmers. One of the most efficient ways to
solve this problem is to use feature selection. Inspired by the notion
of IT based engineering, Xiang Chen et al.,1 formalised the
challenge as a multi-objective optimization problem, proposes an
unique technique MOFES, and compares MOFES to various
traditional baseline approaches using the PROMISE dataset
obtained from actual projects. The final findings demonstrate that
the technique has the benefit of picking fewer features and
providing higher prediction performance in major implementations,

all while having a reasonable and effective cost. Performance
Prediction Graphically, several techniques for PROMISE datasets
are compared.

Ensemble methods have been established by Kiran et al.2 to
properly anticipate software dependability. The ensembles given
are made up of a variety of statistical (multiple linear regression and
multivariate adaptive regression splines) and intelligent approaches
(backpropagation trained neural network, dynamic evolving neuro–
fuzzy inference system, and TreeNet). Three linear and one
nonlinear ensembles were created and tested. The non-linear
ensemble outperforms all previous ensembles, as well as the
constituent statistical and intelligent approaches, according to
studies conducted using software reliability data gathered from the
literature.

Cong et al.3 proposed a hybrid IEDA-SVR model is suggested.
The chaotic mutation IEDA-SVR is being used to forecast software
dependability in order to sustain population diversity. In the trials,
there were two genuine software failure datasets. The suggested
model's prediction performance was compared to that of other
models. The experimental findings show that using IEDA-SVR to
forecast software dependability is extremely successful, and IEDA-
SVR has a superior prediction performance than the other
comparison methods, as well as a pretty accurate prediction
capabilities. Research Finding also suggest that maintaining
population variety might help the prediction model perform better.
The mean square absolute error is 0.0848, IEDA-SVR R value is
0.918 , mean square value is 0.201 which is least when compared
with EDA-SVR and norman and kalman filter

An on-line adaptable software reliability predicting framework
is described using an evolving connectionist methodology based on
multiple-delayed-input format.4 Studies showed that its proposed
method performs admirably the original NN model for cumulative
failure time prediction in aspects of predictions along a wide wide
variety of computer initiatives. The highest results of the
prediction are 95 percent. Based on already known software failure
time data, a genetic algorithm is utilized to maximize the number
of delayed input neurons and neurons in the hidden layer of the
NN architecture.

Kassaymeh et al.5 coupled the SALP swarm technique (SSA)
with a back - propagation NN to tackle software effort prediction
(SEP) and software test prediction. BPNN is by far the most widely
utilized forecasting technique. Model parameter changes, including
bias and weights weight have a significant impact on the
effectiveness of BPNN. The findings demonstrate that SSA-BPNN
outperforms BPNN across every samples. BPNN has an R2 of
0.996,MAE of 0.0360, an RMSE of 0.1907, a RAE in percent of
2.4, and RRSE of 9.7 percent.

Zhen et al.6 predicted software reliability model using a hybrid
technique of WPA and PSO. To predict the values of the GO model
and generate predictions, five types of data from industry were
employed. Each algorithm runs 20 times and picks the best results
after 500 iterations. When the algorithms are performed 20 times,
WPA- PSO has the lowest error rate among the five data sets.

Roy et al.7 offered a software reliability model based on an
artificial neural network (ANN) and trained using an unique
particle swarm optimization (PSO) technique for improved

Keyword Selection
• Software Reliability
• Software Defect
• Software fault

Retrieve Article from
journals

Perform Critical Analysis
• using machine learning
• using optimization

Identify Current limitations
and future research

directions

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 3

software reliability predictions. The suggested ANN is based on the
fault generation phenomena that occurs during software testing at
various levels of fault complexity. The suggested approach takes
into account three different forms of software flaws. Using software
failure data, a neighborhood-based fuzzy PSO method for
competent learning of the suggested ANN was developed. The
neighbourhood fuzzy PSO-based proposed neural network model's
fitting and prediction performances are compared to the traditional
PSO-based proposed Neural Network model. The results shows
that the model allows the faster release of software. The model
allowed the uncertainty in prediction.

The software industry's primary goal is stakeholder satisfaction.
Producer and consumer satisfaction refers to delivering a high-
quality software product. Gheisari et al.8 presented a novel
optimum mathematical model for predicting stakeholder
satisfaction levels (Q). The relationship implications of various
quality parameters are used to validate the real data in optimal
models. It employs constraint equations. The maximum and lowest
values for Q are determined by the optimal model. Constraints are
aspects of software quality. It establishes that the given result is the
best option. The result demonstrates that if the value of any
software quality feature changes, the value of Q decreases. It
establishes that the supplied outcome is the best option.

A novel paradigm for software reliability is proposed by
Sedlacek et al.9 Although there are numerous software reliability
models, the majority of them cannot be utilized for system
component analysis, such as calculating significance measures. As
a result, a new model was presented. This model is built from
source code, which is then utilized to build a syntax tree in the next
phase. A syntax tree is a hierarchical representation of source code
that is unrelated of the computer language used. This tree is then
converted into a structural function and utilized to construct a
reliability model, in this instance a fault tree. The ability to employ
standard methods for system assessment, like logic differential
calculus, is the major benefit of the proposed approach. However,
there are a few drawbacks to this design, such as its high
dimensionality. The Reliability calculated form the syntax model is
0.7567 and the unreliability calculated from the probability is
0.245.

The modified differential evolution (MDE) technique is
proposed by Tahere et al.10 for tackling a nonlinear optimization
techniques. The problem is determining the constraints of a NHPP-
SR model using maximum likelihood estimation (MLE). DE has
two modifications: one is a mutation strategy came up with a new
linear mixture of multiple atleast 3 points for boosting the
algorithm's exploration capacity, and another is a uniform scaling
crossover technique for improving the algorithm's exploitation
ability. The suggested scheme's effectiveness is tested empirically
using three software failure datasets and five software reliability
models. The MDE's effectiveness were verified on the collection of
15 test scenarios, and the quantitative results have been compared
to the fundamental DE and two additional comparable techniques.
In contrast to the basic DE, the suggested algorithm improved the
convergence speed by 53%, according to the research data. For
something like the test suites included in this work, the suggested
method also obtained a correct AR. In contrast to Laplace DE and

RGA, the MDE exhibited a 57 percent and 43 percent
improvement, respectively, and produced appropriate ARs. The
findings' robustness was demonstrated by sensitivity analysis tests.

The CGWO heuristic is proposed as a novel way to quantifying
SRGM characteristics by Dhavakumar et al.11 The suggested
approach outsmarts a number of existing techniques' obstacles.
Using the parameter estimation approach, datasets were used to
obtain the findings of the assessment criteria. The results
demonstrate that the suggested technique reduces prediction error,
relies on data properties rather than assumptions, has an acceptable
forecasting capability, and the entire prediction process is
automated with no user involvement. The Chebyshev graph has a
decent convergence rate of 78 percent based on the chaotic graph
data. In all, 86 percent of the data indicated a link between the
choice variable and the CGWO ftness criterion. The intended
outcome in the SRGM utilising CGWO is fully automated and does
not require any customer involvement.

Optimized the cost and release time by predicting release time,
technique used Optimization. Techniques based on software
dependability models are used to achieve the best possible release
time. Prashant et al.12 proposed that both the original and
anticipated release times be used to complete the task, resulting in
an optimal release time cost. This will aid in determining the
software's effective cost of dependability. Further, this will assist
the client in making a more informed decision when selecting
effective software. Thus, using Python, we were able to optimise
the cost and determine the product's release time, allowing us to
determine that this software will produce the best results.

The optimal test activity allocation issue is formulated by
Vidhyashree et al.13 to optimise fault discovery despite budget
restrictions or to reduce the budget necessary to find a certain no.
of defects. 2-data sets were used to develop and test expectation
conditional maximization methods. The optimal test activity
distribution fault was then addressed to show how dividing limited
testing resources across the testing activities conducted might
enhance the number of defects found. 40.64 is the predicted value
the best allocation for exposing three more problems.
Asymptotically. For the three covariates, the effort dedicated to the
variables converges little than 60, 40, and 10% of the total effort.
The dependability of software for lifetime distributions based on
non-homogeneous Poisson processes is explored by Kim et al.14
The exponential distribution, that is usually utilized in different
fields of software reliability, and the inverse-exponential
distribution, which is frequently applied in the economic and
environmental field, as well as the Burr-Hatke-exponential
distribution, which decreases the hazard function, were used as
lifetime distributions. The exponential distribution model has a
lower mean square error than the inverse-exponential distribution
model and the Burr-Hatke-exponential distribution in this
investigation. As the predicted value for coefficient of
determination is 95 percent, the Burr–Hatke-exponential model can
be considered an efficient model in terms of goodness-of-fit. All
models are considered efficient models if the estimated value for
coefficient of determination is 95 percent or more. The software
failure occurs at the final test failure time of x27 =5.529 in the
NHPP model, and reliability is the chance that the software failure
does not occur between 5.529 and 5.529 t+1. when the mission time

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 4

passes, the non-increasing pattern emerges in the form of the
dependability function, and the inverse-exponential distribution
model outperforms the Burr-Hatke-exponential distribution model
and the exponential distribution model.

Li15 presented an extended software reliability model that takes
into account the unpredictability of field settings. NHPP is the basis
behind this. Several current models are evaluated as special
instances of the generalized model based on the general framework,
and a novel model by 3-parameter S-shaped fault-detection rate and
a random environmental component following the Weibull
distribution is presented.

To forecast software dependability, the suggested fuzzy neural
approach was implemented. When using bell labs' time to failure
data, several parameters like as mean time to failure, duration to
failure, and so on, may be used to forecast reliability. Sahu et al.16
employed a hybrid fuzzy logic and neural network technique. In
this technique, we used algorithm-based fuzzy methodology to
implement data of dependability, and the fuzzy output was then
applied to the MATLAB tool of neural network. We also utilized a
neural network approach called the Levenberg Marquardt
algorithm to forecast dependability. The average normalized
RMSE error was calculated to assess the effectiveness of the
reliability prediction model. We discover that the fuzzy-neural
approach has the lowest error among the four offered ways, with
0.0546 as its useful better result, demonstrating supremacy over the
other methods.

The Ant Colony Optimization (ACO), Neural Network (NN),
Artificial Neural, Svm Classifiers (SVM), Particle Swarm
Optimization (PSO), Genetic Algorithm (GA) and Artificial Bee
Colony (ABC) were all considered as important soft computing
approaches by Diwaker et al.17 Their article explains how soft
computing approaches operate and how to analyses them in order
to forecast reliability. The parameters that are taken into account
while estimating and predicting dependability are also examined.
This study might be used to predict and evaluate the dependability
of a variety of medical equipment, as well as digital, technology,
and fluid mechanics and engineering.

Using ANFIS, a reliability estimate model for CBSS was
presented by Dubey et al.18 The model took into account the most
important parameters that influence CBSS dependability. In
ANFIS, a hybrid NN was employed, which was trained using data
sets. This FIS-based NN guided regulation. This model relied on
ANFIS's adaptive learning and decision-making capabilities. A
Mamdani FIS assessment was also proposed. The ANFIS model
was shown to be more efficient than the FIS model in determining
the consistency of a CBSS. Future studies might involve developing
a model that takes into account the elements mentioned in CBS.
Internal, external, and development process aspects will all be
considered.

For SRP logistic, Tong et al.19 proposed chaotic time series and
heterogeneous ensemble learning (HEEL). To find out if the failure
data was chaotic, this method used chaos identification. Then, it
used a large number of insufficient learners to train the model
HEEL. In the end, a forecast was generated by running a trained
model on the data. SRGMs and data-driven models were compared
to see how well they predicted outcomes. After analysing the data,

author found that the recommended approach had the best
predictability and performance. This method uses MSE as a fitness
function.

Li et al.20 designed the hybrid algorithm using Ant bee colony-
Particle swarm optimization (ABC-PSO) for estimation and
predicate based on software reliability model. The model removes
the unwanted solution in algorithm. The model was fast in
operation but leads to low accuracy.

Lu et al.21 proposed whale optimization model that can easily
handle non-linear data. The three-stage optimization model was
proposed and achieved better reliability but results in low accuracy.

P. R Bal et al.22 proposed an extreme learning Machine ELM
algorithm which gives an error rate of approximately 0.05

S. H. Aljahdali et al.23 investigated Genetic Algorithms (GA) as
a possible substitute to forecasting software reliability
increase. GA is a strong ML approach that combines optimizations
with machine learning to predict the values of very well estimation
methods. The predictability of program dependability was assessed
using an ensemble of GA-trained models. The R2 single model,
average ensemble and weighted average ensemble is 0.97, 0.98 and
1 respectively.

K Bithan et al.24 proposed a Particle Swarm Optimization based
reliability algorithm, a Swarm Intelligence-based stochastic search
technique, was used in this work to evaluate growth models,
resulting in better and optimized outcomes as well as attempting to
avoid issues that can arise when estimating software reliability
growth data set utilizing conventional methods. The NHPP-based
Reliability Growth Model would be estimated using Particle
Swarm Optimization with certain changes. Using PSO with certain
changes, investigators were capable of predicting faults that were
much closer to the real faults for both datasets, that further assisted
in reaching faster convergence. The result shows that the iterations
is reduced to almost 50%.

Sangeet et al.25 proposed a new technique for optimising model
parameters built on the idea of ecological space, differential
evolution (DE), and intelligent behaviour of artificial bee colony
(ABC). The paradigm of ecological space has boosted the exploring
potential of the ABC algorithm. Four standard failure datasets were
used to assess the hypothesized technique. Simulation findings
demonstrates that the suggested holistic model is efficient in
estimating software reliability and is comparable among conceptual
optimization strategies. The proposed approach ABCDE algorithm
calculates overall system reliability to be up to 85 %.

Ahere et al.26 used a basic differential algorithm for optimization
of software parameters. As compared to the basic DE, the proposed
algorithm improved the convergence speed by 53%, according to
research findings. For the test suites addressed in this work, the
proposed algorithm also produced a valid AR.

P. Kumar et al.27 proposed a feedforward NN based back -
propagation algorithm method to enhance the precision of software
reliability. Assessments of performance using a database of genuine
evaluation issues reveal that the suggested prediction model
outperforms standard methodology. The goal of this research is to
look at the software's reliability utilizing soft computing
techniques, that are the efficient way to assess its predictive
capability. The SRGM (Software Reliability Growth Model) is

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 5

employed. Result shows that the Linear regression has a maximum
value of 16.60. The minimal FFNN values for Relative standard
Deviation and Standard Deviation are 0.26 and 3.20, respectively,
whereas the RSD linear regression is 0.41 and the Standard
deviation result is 6.55.

Dhavankumar et al.28 proposed the CGWO heuristic as a new
technique to quantifying SRGM properties in this research. The
number of failures after optimization has good convergence fitness,
according to findings. The CGWO Chaotic grey wolf algorithm
modification reduces errors by even more then 70%, while GWO
only reduces errors by 40% and PSO only reduces failures by 25%.
The Chebyshev graph reveals a 78.0% convergence rate.

Diwakar et al.29 explained how soft computing approaches
function and how to examine them in order to forecast reliability.
The parameters that are taken into account when evaluating and
predicting reliability were all addressed. This research can be used
to estimate and anticipate the reliability of numerous devices
utilized.

L Yang et al.30 proposed a Particle Swarm Optimization
algorithm for software reliability. The benefits and drawbacks of
the swarm intelligence algorithm, as well as enhancement ideas,
were discussed in this work.
Critical analysis of these works is presented in table 1.

Table 1. Critical Analysis of Approaches Used

Ref Year Method Discussions
[1] 2017 MOFES, PROMISE Several Techniques For

PROMISE Datasets Are
Compared.
Performance Prediction.
Reasonable Computational
Cost.

[3] 2014 Hybrid IEDA-SVR
model,

R2 value is 0.9179, Mean
Square Error was 0.201 and
mean square absolute error
is 0.0848.

[4] 2005 Genetic algorithm Next-step-predictability is
maximum at 95%.

[5] 2021 SALP Swarm method
(SSA), Software Effort
Prediction (SEP),
BPNN

BPNN has 0.99531 R2,
MAE is 0.036, RMSE is
0.19069, RAE in % is 2.39
and RRSE is 9.72 %.

[6] 2020 WPA-PSO Hybrid algorithm
outperforms having
accuracy, optimization
performance, prediction
accuracy, and algorithm
stability
PSO has the lowest error
rate

[7] 2019 ANN, (PSO Faster release of software
Allowed uncertainty in
prediction.

[9] 2021 Syntax Tree The Reliability calculated
is 0.7567

[10] 2020 Modified Differential
Evolution (MDE),
Non-Homogeneous
Poisson Process
(NHPP)

Improved the convergence
speed by 53%.

[11] 2021 CGWO heuristic Does not require any
customer involvement.
Chebyshev graph has a
decent convergence rate of
78 percent

[12] 2019 Optimization.
Techniques based on
software reliability
models

Effective cost
Determined the product's
release time.

[14] 2020 Non-homogeneous
Poisson processes,
exponential
distribution

Lower mean square error.
Coefficient of
determination is 95%

[15] 2019 NHPP MSE is 171.1531, AIC is
280.1920, and PP is 0.0517,
R2 = 0.9974.

[16] 2018 Fuzzy neural approach Lowest error around
0.0546.

[18] 2017 CBSS, ANFIS Determined the
consistency.
More efficient than the FIS
model.

[19] 2017 SRP based on HEEL RMSE and average relative
error.
MSE is used as the fitness
function.
Most effective.
Good predicting and
performance.

[20] 2019 Ant bee colony-
Particle swarm
optimization (ABC-
PSO)

The model removes the
unwanted solution in
algorithm. The model was
fast in operation but leads to
low accuracy.

[21] 2018 Whale Optimization The model easily handles
non-linear data. Achieved
better reliability.

[22] 2020 Extreme Learning
Machine (ELM)

The error rate was approx.
0.05.

[23] 2009 Genetic Algorithms
(GA)

The R2 single model,
average ensemble and
weighted average ensemble
is 0.97, 0.98 and 1
respectively.

[24] 2014 Particle Swarm
Optimization

The result shows that the
iterations is reduced to
almost 50%

[25] 2020 Artificial Bee Colony
(ABC).

The proposed approach
ABCDE algorithm
calculates overall system
reliability to be up to 85 %.

[26] 2020 Differential Algorithm Improved convergence
speed by 53%

[27] 2021 SRDM (Software
Reliability Growth
Model)

RDS and SD are 0.26 and
3.20, respectively, whereas
the RSD linear regression is
0.41 and SD result is 6.55.

[28] 2021 Chaotic grey wolf
algorithm

reduces errors by even
more then 70%.

[29] 2018 Soft computing
Methods

PSA, Grey wolf, SALP,
genetic algorithm is
discussed

[30] 2021 Particle Swarm
Optimization

Fitness function is
introduced to increase
reliability rate at MSE

RELIABILITY PREDICTION TECHNIQUES
Countless investigations have been conducted on Reliability

Prediction. Machine learning and statistical techniques are among
the methods advised for predicting software flaws. Before the
actual testing process starts, software reliability prediction attempts
to detect fault-prone software components by utilizing some

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 6

fundamental features of the software program. It aids in achieving
target software quality while minimizing cost and effort. In the
realm of software development, various prediction techniques are
included, including forecasting of effort, privacy, quality, defect,
cost, and re-usability using Swarm evolutionary algorithms,31
Parameter Estimation,32 whale optimization,33 ant Colony,35 apart
from them many unified algorithm,36 swarm particle optimization
Algorithms33,37,38 Optimization based39 and Hybrid wolf
algorithms.40 All of these prediction techniques are still in their
infancy. Experimentation and investigation are being carried out in
order to develop a robust model. Software Reliability Prediction
(SRP) is the process of developing a model that software
practitioners may use to discover defective classes/modules prior to
the testing phase.

Usually, machine learning is concerned with the creation and
computer aided design using methods. These are used to extract
patterns in the data from large datasets. Historically, neural
networks (NN) were used in programming to construct system
integration model for predicting total alteration or re - usability
measures. Instead of developing formulae or rules, the NN model
is trained to repeat a specified set of precise instance classifications.
To handle faulted classes, the Multilayer Perceptron (MLP) is
utilized. Radial Base techniques are used to categorize defects
according to different fault types.

Various statistical techniques are used to identify a basic
straightforward mathematical arithmetic expression that clearly
identifies how categorization would be performed. Univariate
binary logistic regression and logistic regression are two statistics
techniques. Both methods are beneficial for looking into data
containing binary variables. In BI (Bayesian inference), the model
technique tries to correlate measurements with software faults and
fault propensity.

RESEARCH CONTRIBUTIONS FOR SOFTWARE RELIABILITY
PREDICTION USING OPTIMIZATION

The exponential software reliability model is generalized in
study presented by Rani and Mahapatra7 to quantify numerous
aspects, particularly fault initiation and time-varying fault
diagnosis frequency. The software lifetime is built on module
design, including testing effort expended in testing phase and found
software defects, among other things. The allocation of resources
issue is an important step in the software reliability modeling
testing stage. To achieve the necessary degree of reliability,
judgments on optimum allocation of resources among the
components must be made. To define dynamic scheduling of total
projected cost and testing effort, we propose a multi-objective
software reliability model of testing resources with a novel
exponential distribution reliability function. To optimize software
reliability while lowering allocation costs, an expanded particle
swarm optimization (EPSO) is presented. Researchers do trials
utilizing completely random testing-resource sets and the entropy
function to modify performance. In a standard modular testing
phase, the multi-objective models were tested to modules using a
weighted cost function and test effort metrics, and the reliability is
shown to be 99%.

Gupta et al.41 proposed a nonlinear multi-objective optimization
model regarding data envelopment analysis (DEA) for choosing
software systems in the context of optimum redundancy to assure
software reliability. For selection and data, the suggested
optimizing model incorporates both construct and purchase
choices. For assessing the efficiency of software parts based on
many inputs or outputs supplied by diverse individuals of the
deliberation group, researchers employ the DEA approach. The
aggregated data is used to calculate the total efficiency rate of each
software application. Using constraints relating to compatibility of
chosen components, reliability, execution time, and software
system delivery time, the suggested optimization model reduces the
overall cost of software system and optimizes the combined value
of purchase. It also contains data on the testing that must be done
on in-house designed components. To demonstrate the efficacy of
the suggested optimization methodology, a real-world case analysis
of modularity software engineering is addressed. To their
knowledge, no prior research has been done on an integrative
optimizer for the software component selection issue including
build and/or purchase choices with optimum redundancy. The
entire software reliability is 80 percent, with an execution time of
7.647 x 10das.

Kumar et al.42 examined the software's reliability using soft
computing approaches, which are the most efficient way to assess
its predictive capability. Based on the software reliability concept,
it presents a novel comparison analysis to determine the most
appropriate and accurate artificial neural network. In this study, we
present a backpropagation-based feedforward neural network for
improving software reliability accuracy. Comparisons of
performance using a dataset of genuine software assessment issues
reveal that the suggested prediction model outperforms the old
methodology. The minimal MMRE for FF-NN is 7.21, according
to the results. 16.60 is the maximum value for linear regression.

Jabeen et al.44 proposed a highly precise error iteration analysis
technique (HPEIAM) based on error-residuals is suggested to
improve the predictive performance of current PSRGMs. SRGMs
compute residual errors repeatedly, improving and correcting
prediction accuracy to the intended level. HPEIAM's performance
is evaluated using various PSRGMs and two sets of actual software
failure data, with three quality criteria in mind. Furthermore,
researchers compared HPEIAM's projected failures to a GA. In the
first few rounds, the findings show that HPEIAM improves
goodness-of-fit and predicting performance for each PSRGM. The
R2 and RMSE are 99.2 % and 48.8%, respectively. Similarly, after
the second cycle, the desired accuracy is attained for 56 of the data
intervals, with the RMSE value changing to 2.67. From 170.91 to
143.01, the predicted accuracy increases.

Figure 2 shows number of papers of different transaction
including IEEE, springer, Science direct etc. for Software reliability
using different evolutionary techniques.41-51 As per requirement, a
number of articles were considered in this study. Maximum number
of papers were based on Particle Swarm Optimization to evaluate
the software reliability. However, simulation results from various
studies show that PSO has some serious shortcomings. After that,
the research was moved to ACO. This method was thoroughly
investigated. When compared to PSO, their results achieve global

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 7

Figure 2. Optimization Algorithm for Software Reliability Analysis

minima in fewer iterations and at a lower value. As a result, it can
be concluded that ACO outperforms PSO in distance optimization
problems. Another evolutionary technique being researched is Grey
Wolf Optimization. Few Contributions were studied in this area
where from the result we can conclude that it has lower accuracy
and slow convergence in the later stage of search. From figure 2, it
is clearly seen that very little research is conducted on one of the
evolutionary optimization technique called Genetic Algorithm.
This method has numerous advantages and have better scope than
any other optimization technique. Figure 3 shows the Software
reliability comparison with existing techniques. Hybrid Swarm
optimization44 has 85% software reliability, while Multi objective
optimization has 80%.45 Syntax tree has minimum SR optimization
of 75.67%.46 While genetic algorithm has maximum software
reliability around 98.47%.7

Figure 3. Reliability Performance of Optimization Algorithms

RESEARCH CHALLENGES, LIMITATIONS, AND FUTURE
SCOPE

As a result, improving software dependability is critical before
the program's growing importance necessitates a greater capacity to
trust it than before, and various areas of business and society
confront distinct problems as a result. Defects in software can lead
to significant losses such as financial. Software industry is a large
industry; it contributes billion dollars to the world’s economy

annually. Software bugs make software misbehave and cause huge
financial loss and security breaches. Reliable software must include
extra, often redundant, code to perform the necessary checking for
exceptional conditions. This fundamental role means that the
reliability of systems software is of primary importance. As a result,
prior to the software's deployment, it's critical to improve the
software's reliability. The suggested effort will improve the
reliability of software. Numerous studies have been conducted in
the subject of Software Reliability Optimization, as seen by the
literature overview given above.

Reliability growth methodologies have been introduced using a
variety of techniques, including:
• Based on incomplete debugging
• Depending on the degree of the software's faults
• Efforts based on testing
• Using Unification Schemes as just a Base
• Transitioning from a single-dimensional to a multi-

dimensional framework.
Following major issues occurs identified in above mentioned

models:
• Finding the failure parameters.
• To determine statistical significance among determined failure

points.
• To find best fit parameters for estimation of reliability on

multi-dimensional framework.
• Finding the failure points in artificial intelligence related

software.
• In future, this work will be extended to identify the weak

reliable points that can lead to attack condition.

CONCLUSION
While predicting software reliability, the major issue arises due

to imbalanced data. This causes chaos for software developers or
researchers to deal with imbalanced faulty data. The early
prediction causes major issues. Researchers are looking on
ML algorithms-based software defect prediction approaches,
although they haven't looked into it in depth yet. This work has
examined and investigated effective ML approaches for software
dependability prediction in terms of dealing with some of this
circumstance.

CONFLICT OF INTEREST
Authors declare no conflict of interest.

REFERENCES
1. X. Chen, Y. Shen, Z. Cui, X. Ju. Applying feature selection to software

defect prediction using multi-objective optimization. Proc. - Int. Comput.
Softw. Appl. Conf. 2017, 2, 54–59.

2. N. Raj Kiran, V. Ravi. Software reliability prediction by soft computing
techniques. J. Syst. Softw. 2008, 81 (4), 576–583.

3. C. Jin, S.W. Jin. Software reliability prediction model based on support
vector regression with improved estimation of distribution algorithms.
Appl. Soft Comput. 2014, 15, 113–120.

4. L. Tian, A. Noore. On-line prediction of software reliability using an
evolutionary connectionist model. J. Syst. Softw. 2005, 77 (2), 173–180.

5. S. Kassaymeh, S. Abdullah, M. Al-Laham, et al. Salp Swarm optimizer
for modeling software reliability prediction problems. Neural Process.
Lett. 2021 536 2021, 53 (6), 4451–4487.

6. L. Zhen, Y. Liu, W. Dongsheng, Z. Wei. Parameter estimation of software
reliability model and prediction based on hybrid wolf pack algorithm and
particle swarm optimization. IEEE Access 2020, 8, 29354–29369.

N
U

M
B

ER
 O

F
A

rti
cl

es

PSO ACO GWO GA

85% 80% 75.67%

98%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

So
ft

w
ar

e R
el

ia
bi

lit
y

in
 %

Neha Yadav & Vibhash Yadav

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 457 Pg 8

7. P. Roy, G.S. Mahapatra, K.N. Dey. Forecasting of software reliability
using neighborhood fuzzy particle swarm optimization based novel neural
network. IEEE/CAA J. Autom. Sin. 2019, 6 (6), 1365–1383.

8. M. Gheisari, D. Panwar, P. Tomar, et al. An optimization model for
software quality prediction with case study analysis using MATLAB.
IEEE Access 2019, 7, 85123–85138.

9. P. Sedlacek, E. Zaitseva. Software reliability model based on syntax tree.
Int. Conf. Inf. Digit. Technol. 2021, IDT 2021 2021, 73–82.

10. T. Yaghoobi. Parameter optimization of software reliability models using
improved differential evolution algorithm. Math. Comput. Simul. 2020,
177, 46–62.

11. P. Dhavakumar, N.P. Gopalan. An efficient parameter optimization of
software reliability growth model by using chaotic grey wolf optimization
algorithm. J. Ambient Intell. Humaniz. Comput. 2021, 12 (2), 3177–3188.

12. P. Prashant, A. Tickoo, S. Sharma, J. Jamil. Optimization of cost to
calculate the release time in software reliability using python. Proc. 9th
Int. Conf. Cloud Comput. Data Sci. Eng. Conflu. 2019 2019, 470–474.

13. V. Nagaraju, C. Jayasinghe, L. Fiondella. Optimal test activity allocation
for covariate software reliability and security models. J. Syst. Softw. 2020,
168, 110643.

14. H.C. Kim. A study on comparative evaluation of software reliability model
applying modified exponential distribution. Int. J. Eng. Res. Technol.
2020, 13 (5), 867–872.

15. Q. Li, H. Pham. A generalized software reliability growth model with
consideration of the uncertainty of operating environments. IEEE Access
2019, 7, 84253–84267.

16. K. Sahu, R.K. Srivastava. Soft computing approach for prediction of
software reliability. ICIC Express Lett. 2018, 12 (12), 1213–1222.

17. C. Diwaker, P. Tomar, R.C. Poonia, V. Singh. Prediction of software
reliability using bio inspired soft computing techniques. J. Med. Syst. 2018
425 2018, 42 (5), 1–16.

18. S.K. Dubey, B. Jasra. Reliability assessment of component-based software
systems using fuzzy and ANFIS techniques. Int. J. Syst. Assur. Eng.
Manag. 2017, 8 (2), 1319–1326.

19. H. Tong, B. Liu, Y. Wu, B. Xu. Software reliability prediction using chaos
theory and heterogeneous ensemble learning. Risk, Reliability and Safety:
Innovating Theory and Practice - Proceedings of the 26th European Safety
and Reliability Conference, ESREL 2016, 2017, 389.

20. Z. Li, M. Yu, D. Wang, H. Wei. Using hybrid algorithm to estimate and
predicate based on software reliability model. IEEE Access 2019, 7,
84268–84283.

21. K. Lu, Z. Ma. Parameter Estimation of software reliability growth models
by a modified whale optimization algorithm. Proc. - 2018 17th Int. Symp.
Distrib. Comput. Appl. Bus. Eng. Sci. DCABES 2018 2018, 268–271.

22. P.R. Bal, S. Kumar. WR-ELM: Weighted regularization extreme learning
machine for imbalance learning in software fault prediction. IEEE Trans.
Reliab. 2020, 69 (4), 1355–1375.

23. S.H. Aljahdali, M.E. El-Telbany. Software reliability prediction using
multi-objective genetic algorithm. 2009 IEEE/ACS Int. Conf. Comput.
Syst. Appl. AICCSA 2009 2009, 293–300.

24. K. Bidhan, A. Awasthi. Estimation of reliability parameters of software
growth models using a variation of Particle Swarm Optimization. Proc.
5th Int. Conf. Conflu. 2014 Next Gener. Inf. Technol. Summit 2014, 800–
805.

25. Sangeeta, K. Sharma, M. Bala. An ecological space based hybrid swarm-
evolutionary algorithm for software reliability model parameter
estimation. Int. J. Syst. Assur. Eng. Manag. 2020, 11 (1), 77–92.

26. T. Yaghoobi. Parameter optimization of software reliability models using
improved differential evolution algorithm. Math. Comput. Simul. 2020,
177, 46–62.

27. P. Kumar, S.K. Singh, S.D. Choudhary. Reliability prediction analysis of
aspect-oriented application using soft computing techniques. Mater.
Today Proc. 2021, 45, 2660–2665.

28. P. Dhavakumar, N.P. Gopalan. An efficient parameter optimization of
software reliability growth model by using chaotic grey wolf optimization
algorithm. J. Ambient Intell. Humaniz. Comput. 2021, 12 (2), 3177–3188.

29. 10. C. Diwaker, P. Tomar, R.C. Poonia, V. Singh. Prediction of Software
Reliability using Bio Inspired Soft Computing Techniques. J. Med. Syst.
2018, 42 (5), 1–16.

30. L. Yang, Z. Li, D. Wang, H. Miao, Z. Wang. Software defects prediction
based on hybrid particle swarm optimization and sparrow search
algorithm. IEEE Access 2021, 9, 60865–60879.

31. X. Cai, S. Geng, D. Wu, J. Chen. Unified integration of many-objective
optimization algorithm based on temporary offspring for software defects
prediction. Swarm Evol. Comput. 2021, 63, 100871.

32. S. Yadav, K. Mohan G. Parameter estimation techniques of software
reliability growth models: a critical research with experimentation. Int. J.
Recent Technol. Eng. 2019, 8 (4), 7763–7770.

33. Jiarui Wang. Hybrid Wolf Pack and Particle Swarm Optimization
Algorithm for Multihop Routing Protocol in WSN. J. Netw. Commun.
Syst. 2020, 3 (3), 37–44.

34. K. Lu, Z. Ma. A modified whale optimization algorithm for parameter
estimation of software reliability growth models. J. Algorithms Comput.
Technol. 2021, 15.

35. A. Rajasekaran, R. Varalakshmi. An optimized feature selection using
fuzzy mutual information based ant colony optimization for software
defect prediction. Int. J. Eng. Technol. 2017, 7 (1.1), 456–460.

36. H. Okamura, A. Murayama, T. Dohi. A Unified Parameter Estimation
Algorithm for Discrete Software Reliability Models. OPSEARCH 2005
424 2017, 42 (4), 355–377.

37. Sangeeta, K. Sharma, M. Bala. An ecological space based hybrid swarm-
evolutionary algorithm for software reliability model parameter
estimation. Int. J. Syst. Assur. Eng. Manag. 2020, 11 (1), 77–92.

38. R.S. Wahono, N. Suryana. Combining particle swarm optimization based
feature selection and bagging technique for software defect prediction. Int.
J. Softw. Eng. its Appl. 2013, 7 (5), 153–166.

39. R.S. Wahono, N. Suryana, S. Ahmad. Metaheuristic optimization based
feature selection for software defect prediction. J. Softw. 2014, 9 (5).

40. L. Zhen, Y. Liu, W. Dongsheng, Z. Wei. Parameter estimation of software
reliability model and prediction based on hybrid wolf pack algorithm and
particle swarm optimization. IEEE Access 2020, 8, 29354–29369.

41. A. Jindal, A. Gupta, Rahul. Comparative analysis of software reliability
prediction using machine learning and deep learning. Proc. 2nd Int. Conf.
Artif. Intell. Smart Energy, ICAIS 2022 2022, 389–394.

42. G. Jabeen, P. Luo, W. Afzal. An improved software reliability prediction
model by using high precision error iterative analysis method. Softw. Test.
Verif. Reliab. 2019, 29 (6–7).

43. Sangeeta, K. Sharma, M. Bala. An ecological space based hybrid swarm-
evolutionary algorithm for software reliability model parameter
estimation. Int. J. Syst. Assur. Eng. Manag. 2020, 11 (1), 77–92.

44. G. Jabeen, P. Luo, W. Afzal. An improved software reliability prediction
model by using high precision error iterative analysis method. Softw. Test.
Verif. Reliab. 2019, 29 (6–7).

45. P. Sedlacek, E. Zaitseva. Software Reliability Model based on Syntax
Tree. Int. Conf. Inf. Digit. Technol. 2021, IDT 2021 2021, 73–82.

46. S. Sinha, N.K. Goyal, R. Mall. Survey of combined hardware–software
reliability prediction approaches from architectural and system failure
viewpoint. Int. J. Syst. Assur. Eng. Manag. 2019, 10 (4), 453–474.

47. D. Singh, S. Sinha, V. Thada. A novel attribute based access control model
with application in IaaS cloud. J. Integr. Sci. Technol. 2022, 10 (2), 79–
86..

48. P. Rani, G.S. Mahapatra. A neuro-particle swarm optimization logistic
model fitting algorithm for software reliability analysis. Proc. Inst. Mech.
Eng. Part O J. Risk Reliab. 2019, 233 (6), 958–971.

49. M. Yazdani, M. Babagolzadeh, N. Kazemitash, M. Saberi. Reliability
estimation using an integrated support vector regression – variable
neighborhood search model. J. Ind. Inf. Integr. 2019, 15, 103–110.

50. J.S. Wang, S.X. Li. An Improved Grey Wolf Optimizer Based on
Differential Evolution and Elimination Mechanism. Sci Rep, 2019, 9 (1).

51. R.R. Patil, A.U. Ruby, B.N. Chaithanya, S. Jain, K. Geetha. Review of
fundamentals of Artificial Intelligence and application with medical data
in healthcare. J. Integr. Sci. Technol. 2022, 10 (2), 126–133.

	Submitted on: 06-Oct-2022; Accepted and Published on: 01-Dec-2022
	ABSTRACT
	Introduction
	Software Defect Prediction
	Reliability Prediction Techniques
	Research Contributions for Software Reliability Prediction using Optimization
	Research Challenges, Limitations, and Future Scope
	Conclusion
	Conflict of Interest
	References

