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ABSTRACT 
 
 

Edible mushrooms have been used as either reducing 
or stabilizing agents in the biological process of 
synthesis of nanoparticles. The mushroom-assisted 
synthesis has been reported to produce large quantities 
of proteins and has the characteristic large yield and 
low toxicity issues. The nanoparticles derived from 
them are coated with special coatings that protect 
them from external environment, thus improving their 
life span and stability. This review describes the various 
mushrooms that assisted in the synthesis of 
nanoparticles such as silver, gold, zirconia and their 
tentative use in various biological aspects have been 
discussed. Moreover, the characterization of various nanoparticles using analytical techniques has also been highlighted.  

Keywords: Edible mushrooms, nanoparticles, gold nanoparticles, silver nanoparticles, zirconia nanoparticles, biosynthesis.

INTRODUCTION 
Natural products are the hub for various bioactives that possess 

various medicinal properties.1–5 Natural products are shown to 
possess anticancer, antimalarial, antimicrobial, analgesic, anti-
Alzheimer, anti-Parkinson, and wound healing effect.6–12 Out of 
them, mushrooms are one of the rich sources of bioactives. 
Mushrooms have been used for therapeutic interventions as well as 
asource of food. They have been reported in earlier texts such as 
Materia Medica for their use in diseases and ailments. They are rich 
in polysaccharides and have active moieties needed for immune 
response. They contain high nutritional value-based ingredients 
such as vitamins, protein, etc. but it lacks cholesterol.13 Mushrooms 
as such do not belong to any taxonomic category. But researchers 

had tried to name it as the macro fungus that has a budding fruitful 
body that can be seen through the naked eye and can be sensed 
through organoleptic evaluation. There are over 20,000 varieties of 
mushrooms but only 10% of them have been explored. The edible 
class of mushrooms that have shown therapeutic potential included 
the Lentinus, Auricularia, Hericium, Grifola, Flammulina, 
Pleurotus, Ganoderma,Trametesand Tremella. The mushroom 
known as Pleurotus has been reported to possess medicinal 
properties such as anticancer, antioxidant, and antitumor properties. 

Owing to the diverse range of active substances that can be 
derived from mushrooms, they have been browbeaten by 
investigators for the amalgamation of nanoparticles from them. The 
proteins of mushrooms had been utilized in the synthesis of metallic 
nanoparticles such as Ag, Au, etc. Many researchers have 
developed nanoparticles using mushrooms for therapeutic 
applications as shown in Table 1. The main benefit of using 
mushrooms as factories of Nanoparticle synthesis is due to the 
presence and release of a higher number of extracellular enzymes 
that further act as a stabilizing agent for synthesis.14–19 The 
chemicals secreted by mushrooms during nanoparticle synthesis are 
also able to reduce the toxicity arising from it. When nanoparticle 
synthesis is carried out in bacterial cell the nanoparticles does not 
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remain localized, instead, they interact with the bacterial cell wall 
and create toxicity to cells.20,21 

A mushroom has high metal binding capacity in comparison to 
bacteria and hence has gained wider exposure. Various mushrooms 
with various types of nanoparticles produced from them have been 
tabulated as per Table 1. 

 
Table 1. Literature survey of various edible mushrooms and 
nanoparticles produced from them. 

 
Mushrooms 

Medicinal 
property 

Type of 
nanoparticles 

 
Ref. 

Pleurotussajor-caju Antibacterial AgNPs 22 

Pleurotusflorida Antibacterial AgNPs 23 

Agaricusbisporus Antibacterial AgNPs 

24 
Calocybe indica Antibacterial AgNPs 

Ganoderma lucidum Antibacterial AgNPs 

Pleurotusostreatus Antibacterial AgNPs 

Pycnoporussanguineus Antibacterial AgNPs 
 
25 Schizophyllum commune Antibacterial AgNPs 

Pycnoporussanguineus Antibacterial AgNPs 

Schizophyllum commune Antibacterial AgNPs 26 

Pleurotusflorida Antibacterial AgNPs 27 

Ganoderma lucidum Antibacterial AgNPs 28 

Pleurotus giganteus Antibacterial AgNPs 29 

Pleurotusostreatus Antifungal AgNPs 30 

Pleurotuscornucopiae var. 
citrinopileatus Antifungal AgNPs 31 

Polyporus rhinoceros Anticancer SeNPs 32 

Ganoderma neo-
japonicum Anticancer AgNPs 33 

Pleurotusdjamor var. 
roseus Anticancer AgNPs 34 

 

SILVER NANOPARTICLES 
Silver nanoparticles (AgNPs) are formerly used as an active drug 

moiety in gene therapy, targeted drug transport, and artificial 
implants, as well as the diagnostic agent for sensing and imaging in 
the early stages of various diseases.35–38 They may be produced 
efficaciously via several synthesis techniques, including heating 
methods, ionizing radiation, laser irradiation, and radiolysis. These 
approaches for the processing of nanomaterials are expensive and 
environmentally unfriendly. The use of Pleurotusflorida extract, 
edible mushroom, and silver nitrate (AgNO3) salt inthe synthesis of 
stable biofunctionalized AgNPs via photo-irradiation andreaction 

mixture exposed directly to the sunlight, is an attempt to establish 
an environmentally friendly process for AgNPs synthesis.27 The 
mycosynthetic system usedto biosynthesize the Ag nanoparticles 
has numerous benefits over the chemical approaches, including 
higher biosafety, non-toxicity, and being eco-friendly to the 
environment.39 

The Pleurotus sp. is among the most popular medicinal and 
edible mushrooms, as it comprises of several active composites. P. 
ostreatus, P. florida,and P. sajorcaju are generally used in AgNPs 
synthesis. The oyster mushroom engaged as first amongst the 
macrofungi in nanoparticle synthesis and their utilizations. Among 
all metallic nanoparticles, AgNPs are the most common which are 
synthesized from this mushroom. These silver nanoparticles exhibit 
inhibitory effects towards several pathogenic microorganisms, 
yeasts, and molds and are used to confiscate textile dyes, as well as 
in cancer treatment.40 

The initial research on nanoparticle synthesis via edible 
mushrooms with proteins from the spent mushroom substrate to 
form AgNPs, which is accompanied by different extracts from 
mycelium and mushroom fruiting bodies. A modest application for 
the formation of AgNPs in core-shell via SMS (spent mushroom 
substrate) exposed to an organic surface, which reduces the Ag+ and 
form the AgNPs stabilization via secreted mushroom protein. After 
24 hours, the AgNO3 solution incubated with SMS turned yellow, 
suggesting the development of stable Ag-NPs (Silver 
nanoparticles).41 

Although the mechanism of AgNPs synthesis is unknown, recent 
researches suggest that the intracellular synthesis of silver 
nanoparticles is linked to nitrate reductase, which releases an 
electron from NADH that converts Ag+ to Ag0, resulting inthe 
creation of NAD+. The extracellular synthesis of silver 
nanoparticles is linked to the reduction of Ag+ via natural organic 
mycomaterials e.g., proteins, enzymes, polysaccharides, amino 
acids, etc.40 as illustrated in Figure 1. 

Roy et al. synthesized silver nanoparticles using the enoki 
mushroom water extract and integrated them with Starch/agar-
based functional films for active packing applications.42 The 
integration of nanoparticles showed strong antibacterial action 
against food-borne bacteria such as L.monocytogenes and E.Coli. 
Also due to the presence of silver nanoparticles, the water vapor 
barrier and hydrophobicity of films got enhanced.Similarly, Li et 
al. studied the extraction of silver nanoparticles from Aspergillus 
terreus.43 The formation of silver nanoparticles was monitored 
using UV Spectroscopy as shown in Figure 2. 

GOLD NANOPARTICLES 
The synthesis of gold nanoparticles has been fascinated as a 

major consideration because of their incipient utilizations in various 
fields such as biomedicines, biosensors, and bioimaging.44,45 
Because of their high Fermi potential, metal nanoparticles, 
especially AuNPs have excellent catalytic properties. The 
yellowish color of the solution of gold ions worn as the color of 
mushroom stripe turned to the pinkish-redcolor, suggesting the 
development of intracellular gold nanoparticles(AuNPs) and the 
aqueous solution gradually turned out to be colorless, 
demonstrating no formation of extracellular gold nanoparticles.46  
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Figure 1. Synthesis of silver nanoparticles (AgNPs) by using the 
edible mushrooms. 

 
Figure 2.The UV-Vis spectra recorded for the reaction of fungal cell 
filtrate with AgNO3 solution. Reproduced with permission from Ref 
43(under creative common licence). 

 
They display surface plasmon resonance (SPR), Rayleigh 
scattering, and surface-enhanced Raman scattering (SERS), 
making them useful in medicinal fields, catalysis, and 
optoelectronics.47 

Mushrooms are widely recognized as a high proteinaceous food, 
containing more than 75% protein. Oyster mushroom(Pleurotus 
Sp.) is a virtuous source of riboflavin, in addition to proteins.48 
Riboflavin plays a vital role in bound coenzymes to form flavin 
mononucleotide (FMN) and flavin adenine dinucleotide (FAD), 
which aid as the catalysts for severaloxidation and reduction 
reactions. It is known that flavins (i.e., flavoproteins) existing in the 
extract of mushrooms are reliable for reducing Au ions into AuNPs. 
When exposed to sunlight, the reaction mixture absorbs the photons 
of energy, and flavins in the reaction mixture become excited and 
act as oxidizers or electron donors. This supplies a robust indication 
for the renovation of Au+ to Au0. In addition,the presence of protein 
isalleged to cap the AuNPs produced, making them 
biofunctionalized and stable.49 

Gold nanoparticles (AuNPs) have been manufactured by the 
reduction of chloroauric acid with glucan, eluted from Pleurotus 
florida, an edible mushroom. Glucan serves as the stabilizing as 

well as the reducing agent. This synthesis specified that the size 
distribution of AuNPs altered with a variation in the concentration 
of chloroauric acid (HAuCl4).50 The representation of the pathway 
for gold nanoparticles (AuNPs) synthesis is shown in Figure 3. 
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Figure 3. Synthesis of gold nanoparticles (AuNPs) by using edible 
mushrooms. 

 
To determine the existence of Au-NPs, tinny slices of fungal 

mycelium have been examined underneath a field emission-
scanning electron microscope (FE-SEM) with subordinate electron 
detectors at 15 kV voltage. The fundamental investigation of 
mushroom mycelia has been done by energy-dispersive X-ray 
spectrometry (EDS) that is coupled with scanning electron 
microscopy (SEM). The amount of gold deposited within 
mushroom mycelia is determined by inductively coupled plasma-
optical emission spectrometry (ICP-OES).51 

The core-shell morphology of Au-NPs is determined by using 
FTIR spectroscopy. The AFM technique is employed to investigate 
the surface morphology of AuNPs. The size and exact location of 
accumulated AuNPs in mushroom mycelium are determined via 
transmission electron microscopy (TEM), indicating that the 
formed nanoparticles are of uneven shape. The size and shape of 
gold nanoparticles (AuNPs) are regulated via deviations in 
temperature conditions and the relative concentration of extract 
about metal ions.52 

ZIRCONIA NANOPARTICLES 
Zirconia is a technologically significant material with excellent 

natural color, transformation durability, higher strength and 
chemical stability, corrosion resistance, and chemical, and 
microbial resistance. Zirconia is an amphoteric element, which 
means it can be both acidic and basic. The more notable feature of 
zirconia is its steadiness under reducing circumstances, making it a 
valuable material in the catalytic region.53 

Zirconium dioxide (ZrO2), also known as zirconia, is a white 
color powder, that exists in three different polymorphic forms i.e., 
monoclinic, cubic, and tetragonal. The monoclinic phase of 
zirconia is constant below 1170 °C, and exists in the tetragonal 
phase between 1170 ˚C and 2370 ˚C, whereas above 2370 ˚C, 
zirconia renovates into the cubic phase.54 Zirconium is used in a 
variety of applications including, structural reinforcement, 
adsorption, photodegradation, and antimicrobial agents.55 ZrO2 NPs 
have sparked a lot of research interest among transition metal oxide 
nanoparticles because of their specific catalytic, thermal, electrical, 



H. Chopra et. al. 

Journal of Integrated Science and Technology J. Integr. Sci. Technol., 2023, 11(1), 427       Page  4 

mechanical, optical, sensing, and biocompatible properties.56 They 
have been used in solid oxide fuel cells, solar cells, bone implants, 
nitrogen oxide, and oxygen gas sensors. Because of their long-term 
stability and strong oxygen ion transport capabilities, the stabilized 
zirconia nanoparticles are well-equipped for higher-temperature 
energy conversion systems.53 

The usage of zirconium NPs in biological fields is rapidly 
growing. They are generally used as the drug delivery carriers for 
several medications such aspenicillin, itraconazole, alendronate, 
and zoledronate as well as gene delivery carriers with target 
specificity.57,58 Zirconia nanoparticles have been synthesized by 
using several physicochemical approaches including, sol-gel 
synthesis, hydrothermal methods, and aqueous precipitation 
methods, and require the conditions of higher pressure and 
temperature. Biological methods for the synthesis of zirconia 
nanoparticles have more benefits because they use an 
environmentally friendly approach at mild pH, temperature, and 
pressure, as well as at significantly lower costs without the 
explosion of any toxic waste to the environment.59 

Zirconia NPs might be formedvia challenging the fungus i.e., 
Fusarium oxysporum with aqueous ZrF6

2- anions; extracellularly 
protein-mediated hydrolysis of anionic complexes outcomes in the 
simplistic synthesis of nano-crystalline zirconia at room 
temperature.60 Furthermore, zirconium NPs have been synthesized 
vialeaf extract of Eucalyptus globulus with spherical morphology 
in the range of 9-11 nm. These zirconia nanoparticles displayed a 
higher antioxidant potential, strong antibacterial activity against 
using the disc diffusion method as well as remarkable anticancer 
activity towardshuman lung (A-549)cancer cell lines and human  

 

 
Figure 4. Synthesis of Zirconia nanoparticles by using edible 
mushrooms 

colon (HCT-116)cancer cell lines by using MTT and DPPH assays, 
respectively.57,61 The figurative demonstration of the pathway for 
zirconia nanoparticle synthesis is depicted in Figure 4. 

MISCELLANEOUS NANOPARTICLES 
The “green” methodology for the synthesis of nanoparticles, 

which is promptly substituting conventional chemical synthesis, is 
of prodigious curiosity due to its environmental-friendly nature, 
economical views, feasibility,and applications in numerous areas 
including, nano-medicines and catalysis medicines.16 

The myogenesis of nanoparticles has been discovered to be an 
effective and appropriate method for the production of several 
nanoparticles with considerable potential and their utilities in 
various fields such as food, medicines, agriculture, textiles, optics, 
electronics, and cosmetics.15 Since fungi and yeasts are efficient  
extracellular enzyme secretors and numerous varieties develop 
quickly; culturing and maintaining them in the laboratories is facile 
and simple. By using intracellular or extracellular reducing 
enzymes, edible mushrooms may produce metal-NPs and 
nanostructures.16 Several mushroom-active materials are capable of 
forming the nanoparticles. Many investigators have examined 
several mushroom elements including, enzymes, proteins, 
polysaccharides, and complexes of polysaccharide-proteins as the 
sources for metal reduction and nanoparticle stabilization in 
addition to the mushroom extract.62 Roy et al. synthesized sulfur 
nanoparticles from the facile acid hydrolysis process of enoki 
mushrooms with a size range of 20nm.63 The nanoparticles were 
further integrated with the Gelatin-cellulose nanofiber for food-
packing applications. The presence of sulfur nanoparticles 
enhanced the mechanical and UV protection activity of the film. 
The films were further characterized using the FESEM, FTIR, 
Mechanical properties, and vapor barrier activities. Green synthesis 
of multifunctional and spherical Palladium nanoparticles (Pd NPs) 
using Agaricus bisporus (mushroom) fungus was recently 
described.64 Until a brown hue formed, indicative of the 
development of Pd NPs, the mushroom was mixed with Pd (II) ions 
at a ratio of 1:9 at room temperature to synthesize the NPs. The loss 
of UV/Vis absorbance at 405 nm, corresponding to Pd (II) ions, was 
used as evidence for the production of Pd NPs. The synthesized Pd 
NPs had a size of 13 nm and a zeta potential of 24.3 mV, making 
them very stable. Both Gram-positive Streptococcus pyogenes and 
Gram-negative Enterobacter aerogenes were killed by these 
compounds to a substantial degree. The manufactured NPs were 
also shown to be biocompatible with RBCs and to exhibit 
antioxidant and anti-inflammatory properties. 

Recently, the biological synthesis of NPs has gained a lot of 
consideration via several biological tools like extracts of plants and 
microorganisms as the stabilizing and reducing agents. These 
synthesized nanoparticles have been characterized by using 
Scanning Electron Microscopy (SEM), Fourier Transform Infrared 
(FT-IR),Atomic Force Microscopy (AFM), Dynamic Light 
Scattering (DLS),and Energy Dispersive X-ray (EDX) method.  

In mushroom studies, two species i.e., Coriolus versicolor and 
Pleurotus ostratus are utilized prominently to produce the cadmium 
nanoparticles(Cd-NPs). Cd-NPs are successfully formed by using a 
solution of extracellular biomass of Caribena versicolor and 
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cadmium sulfide.65 Selenium nanoparticles (SeNPs) have recently 
become a new goal of research since, they exhibit excellent 
bioavailability, lower toxicity, and remarkable anticancer activity.66 
Highly stable SeNPs have been efficaciously produced via 
mushroom polysaccharide-protein complexes (PSPs) that are 
eluted from the sclerotia of Pleurotus tuber-regium. Furthermore, 
these novel SeNPs are significantly inhibiting the growth of tumor 
progression concomitantly in patients of breast carcinoma and 
MCF-7 cancer cell lines by inducing apoptosis in a dose-dependent 
mode, without showing any cytotoxicity to the normal cells which 
signify that their cytotoxicity is cancer-specific.67 
 
Table 2. Literature survey of various techniques enlisted with 
property to be determined for nanoparticle characterization. 

Property of 
Nanoparticles Techniques employed Ref. 

Particle 
morphology 

Transmission electron microscopy 68,69 

Scanning electron microscopy 70,71 

Freeze fracture electron microscopy 72,73 

High-resolution transmission 
electron microscopy 

74 

Surface 
hydrophilicity 

Hydrophobic interaction 
chromatography 

75,76 

Zeta potential measurement 77,78 

Molecular weight 
and crystallinity High-resolution mass spectroscopy 79,80 

 

Gas chromatography-mass 
spectrometry analysis 

81,82 

Raman spectroscopy 83–85 

X-ray diffraction 86,87 

Surface 
chemistry 

Fourier transform infrared 
spectroscopy 

88 

Nuclear magnetic resonance 89,90 

Mass spectroscopy 91,92 

Thermal stability 
Differential scanning calorimetric 93,94 

Thermogravimetric analysis 95,96 

 

VARIOUS APPLICATIONS OF NANOPARTICLES 
 

Applications of Silver Nanoparticles 
Silver nanoparticles derived from edible mushrooms have been 

used for their antibacterial and antimicrobial action. The 
nanoparticles derived from Ganoderma lucidum extract showed 
DNA cleavage activity.97 It becomes determined that the silver 
nanoparticles have been capable of reason the single stress DNA 
cleavage for 30 and 60min at distinction dilutions. The 
nanoparticles also showed strong antibacterial action against gram-
positive microbes such as S.aureus, E.hirae, and B.cereus. Also, it 

was able to inhibit the microbes belonging to the gram-negative 
class of bacteria and C. albicans fungus. Similarly, Arun et al. 
described the antimicrobial action of AgNPs synthesized 
Schizophyllum commune for their antimicrobial activity against the 
E.Coli, B.subtilis, Klebsiella pneumoniae, and Pseudomonas 
fluorescens.26 The NPs were also able to inhibit the growth of 
Trichophytonsimii, Trichophyton mentagrophytes, and 
Trichophytonrubrum significantly. 

Researchers developed silver nanoparticles from the fomitopsis 
pinicola and it was found that they possess anticancer properties.98 
The silver nanoparticles caused deformities in cellular morphology. 
The nucleus of cells also got disintegrated and condensed as many 
of the cells were found to be dead. The dose-dependent action on 
tumor cells was observed as confirmed by the colorimetric assay. 
The main reason behind the cell death can be attributed due to the 
presence of program cell death, as the nucleus undergoes 
disintegration and DNA fragments after nanoparticle 
introduction.99 Sanpui et al. described the mechanism of AgNPs 
that it interferes with the regular activity of cells and interferes with 
the equilibrium of the membrane inducing the formation of 
apoptotic signaling genes leading to cell death. Similarly, another 
group of researchers also reported the anticancer application of 
silver nanoparticles.100,101 

The silver nanoparticles derived from Agaricus bisporus fungi 
are also reported to possess photocatalytic, antioxidant, and anti-
inflammatory activity.102 The nanoparticles showed better anti-
inflammatory activity compared to aceclofenac. The silver 
nanoparticles have been found to impede the growth of biofilm 
formation and reduce the death rate of Ruditapes philippinarum.103 

Researchers synthesized silver nanoparticles derived from 
Ganoderma lucidum for the remedy of drug-resistant E.coli 
remoted from the catheter used for urinary tract infections.104 The 
DPPH and ARP results showed comparable results in terms of the 
potency of free radical scavenging activity, in comparison to 
Quercetin. The AgNPs showed a reducing effect on tumor cell lines 
such as MDA-MB-231. Similarly, silver nanoparticles derived 
from Ganoderma neo-japonicum Imazeki showed anticancer 
activity.33 Silver nanoparticles can produce Reactive oxygen 
species. Accumulation of a larger amount of ROS leads to oxidative 
damage.105 The cells were equally treated with Doxorubicin and 
silver nanoparticles. As the intracellular production of ROS 
increased the levels of ROS generation in silver nanoparticles 
treated cells also increased. The results showed that ROS is an 
important factor for apoptosis in yeast cells. Silver nanoparticles 
are said to possess the antibacterial property of S.aureus and 
showed good inhibition characteristics.24 Moreover, they also were 
exploited for their antibacterial and anti-inflammatory action on 
wounds.106 Researchers synthesized silver nanoparticles using the 
Pleurotus florida mushroom extract.107 The nanoparticles showed 
significant antibacterial activity against Streptococcus pyogenes 
(22.17 ± 0.66 mm), Enterococcus faecalis (16.54 ± 0.88 mm), 
Klebsiella pneumoniae (26.32 ± 0.88 mm), Shigella flexneri 
(27.21 ± 0.66 mm), Candida albicans (15.13 ± 0.33 mm) and 
Aspergillus fumigatus (14.89 ± 0.33 mm). The bactericidal activity 
was found to increase significantly with increasing synergistic 
AgNPs with mushroom extract concentration. Differences in cell 
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wall composition explain why AgNPs have different antibacterial 
actions on Gram-negative and Gram-positive bacteria. Because 
Ag+ ions are released from NPs and interact with bacterial 
enzymes, AgNPs exhibited a larger zone of inhibition. By 
interacting with thiol, carboxyl, hydroxyl, amino, phosphate, and 
imidazole groups in proteins and enzymes on bacterial membranes, 
green-synthesized AgNPs exert antibacterial action. This results in 
severe structural deformation of the cell membrane. Then, the 
AgNPs enter the cells through the porous membranes and inactivate 
the enzymes, causing the cells to suffocate, stop replicating, and 
die.108 
Applications of Gold Nanoparticles 

Researchers prepared gold nanoparticles from Agaricus bisporus 
mushroom.109 The nanoparticles thus prepared were able to degrade 
the decolorizing activity of Methylene blue and the decrease was 
showing a dose-dependent effect with decolorization at 97.98%. 
Similarly, another group of researchers prepared nanoparticles 
from the mushroom. The nanoparticles were able to reduce the 
methylene blue dye with a decolorization efficiency of 75.35% after 
4h of treatment.110 The gold nanoparticles also showed inhibitory 
action against the various cancer lines such as A-549, K-562, and 
HeLa.49 But no effect was observed against the Vero cell lines. 
Another group of researchers also showed the cytotoxic effect of 
mushrooms produced from Inonotusobliquus on the cancer cell 
lines such as MCF-1 and NCI-N87.111 The anticancer activity of 
gold nanoparticles was also observed for the HepG2 and HCT-116 
cells.112 The nanoparticles showed alterations in the morphology of 
cells. The anticancer effect of AuNPs may be attributed due to 
irregular shape and functional groups attached to the surface. The 
gold nanoparticles, derived from Pleurotus sajor-caju showed ant 
proliferative properties in the case of colon cancer cell lines.113 The 
nanoparticles caused morphological alterations in the HCT-116 cell 
lines. The cells treated showed a loss in shape and cell adhesion 
capacity and got shrunk. Many studies supported evidence of the 
antiproliferative and anticancer effects on the HeLa cells, Hep-2 
cell lines, and sarcoma 180.114–116 The nanoparticles derived from 
Pleurotus florida and Hericium erinaceus have been used as 
anticancer agents.117 
Applications of other metallic nanoparticles 

Dias et al., synthesized zinc nanoparticles based on Cordyceps 
militaris. The nanoparticles thus obtained showed 70-90% survival 
rate in lethality assay and possessed α-amylase and α-glucosidase 
inhibitory effects. Along with this the nanoparticles also showed 
antibacterial action on P.aeruginosa, Shigella flexneri, 
P.vulgaris.118 Zeng et al. studied the antiproliferative effect of 
selenium nanoparticles decorated with water-soluble 
polysaccharides of various mushrooms. The nanoparticles induced 
caspases and mitochondria-mediated apoptosis but doesn’t affect 
neighboring organs.119 Similarly, Ali et al. also decorated selenium 
nanoparticles using proteins derived from protein precipitation of 
Lentinus edodes mushroom. The nanoparticles showed 
antifibrinolytic activity invitro.120 Liu et al. studied the antifatigue 
effect of selenium nanoparticles derived from polysaccharides of 
Lyciumbarbarum(LBP).121 The effectiveness of LBP-decorated 
SeNPs in fighting tiredness was measured with a forced swimming 
test. After 30 days of storage, the findings revealed that LBP1-

SeNPs maintained an average particle size of around 105.4 nm, 
which is lower than that of LBP2-SeNPs and LBP3-SeNPs. All 
LBP1-SeNPs dose groups examined had a longer fatigue 
swimming time compared to the control group (p 0.05), with the 
high-dose group's duration being even noticeably longer than the 
positive group. LBP1-SeNPs alleviated tiredness by boosting 
glycogen reserve, raising antioxidant enzyme levels, and 
modulating metabolic process, as evidenced by measurements of 
glycogen, blood urea nitrogen (BUN), blood lactic acid (BLA), 
superoxide dismutase (SOD), and malondialdehyde (MDA). 

CONCLUSION 
Though the nanoparticles produced from myco-source are quite 

effective for their antibacterial and other medicinal action. But 
still,the toxicity level needs to be evaluated. There have been no 
extract guidelines for evaluating their effectiveness such that they 
can be standardized for normal human usage. Thus, there is a need 
to develop some regulatory framework for the development of 
evaluation techniques. The rate of production of nanoparticles 
depends on environmental factors too. One cannot say if 
mushrooms are grown from the same species, the place and quality 
of nutrition given also influences nanoparticle production. Thus, 
still, more clinical aspects need to be evaluated in the future time. 
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