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ABSTRACT 
 

Research on aircraft detection has 
recently resulted in significant 
military and civil applications. 
Concurrently, research relying on 
DL (Deep Learning) and image 
processing has gained wide 
interest in object tracking. 
However, variations in the kind of 
aircraft, complex background, and pose have made it complex to detect aircraft efficiently. Thus, an effective algorithm is needed to solve this 
difficulty. For this purpose, the study considers the plane-sent dataset. It proposes RRBCNN (Region Regression Based Convolutional Neural 
Network) for classifying stationary aircraft into "planes" and "not planes" with high accuracy. The study also introduces SRM (Scale Reduction 
Module), which RRBCNN utilizes for minimizing the feature-map scaling. It also eliminates information loss to enhance the training rate. This 
assists in improving aircraft detection by affording suitable bounding boxes. The performance of this system is analyzed in terms of AC (Accuracy), 
FPR (False Positive Rate), MR (Missing Rate), ER (Error Ratio), precision, average processing time (T), recall, specificity, sensitivity, and FN (False 
Negative) rate. Three conventional types of research are considered for comparative analysis to evaluate the efficiency of the current work. 
Finally, the efficiency of the introduced methodology is proved through analysis.  
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INTRODUCTION 
With the technological development corresponding to remote 

sensing and the improvement of image resolution, the automatic 
detection of aircraft in high-resolution images is significant in 
military applications. It has also become a hotspot in the aviation 
field. Detecting aircraft is an important area in analyzing remote 
sensing images. Specifically, identifying stationary aircraft might 
be of deliberated importance as it affords a successful and 
comprehensive process for decision-making to the rapidly 
progressing military operations. Moreover, satellite images highly 
rely on the research corresponding to the geometric structures of 

aircraft while detecting planes by image processing methods. 
Evident aircraft configuration plays a significant part in detecting 
satellite pictures.1 However, various disturbing artifacts can exist 
around the aircraft. Therefore, it is important to carry out pre-
processing measures to eliminate specific noise and explain aircraft 
characteristics for efficient detection. Several aircraft recognition 
and identification experimentations are explored by different 
researchers.2  

  Accordingly, an efficient method for detecting airplanes in 
remote sensing images relying on the non-maximal and multi-layer 
feature fusion algorithm has been recommended. Following the 
general lower leveled remote sensing and natural image features, 
R-CNN (Region-based Convolutional Neural Networks) have been 
selected for transfer learning through limited data.3 Subsequently, 
L2-kind normalization, dimensionality reduction, feature 
connection, and scaling have been suggested for efficient low-level 
and high-level feature fusion.4 Lastly, a non-maximal suppression 
technique relying on the soft decision operation has been endorsed 
to solve overlap issues of the detection boxes. Experimentations 
explored that the recommended system could efficiently enhance 
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the representation capacity of small and weak objects and accurate 
and quick detection of airplane objects.5 

Similarly, meta-analysis has been conducted by considering the 
outcomes of conventional research to document the development 
and employment of supervised land cover image classification. 
This process encompasses several factors like sensors, targeted 
classes, geographical areas, segmentation algorithms, uncertain 
variables, land cover kinds, supervised classifiers, size of training 
sample, and accuracy analysis techniques. Scientific progress in 
supervised classification has explored high remote sensing image 
resolution like UAV and has been profitable in attaining better 
accuracy.6 However, there exist various exceptional cases. For 
instance, Pleiades images have been mainly employed in urban 
regions, leading to anomalous minimum accuracy for classification. 
Thus, employing widely employable remote sensing images or the 
land cover kinds is vital for further verification of object-based 
image classification methodology.7,8  

   In addition, an agile CNN framework termed Sat CNN has 
been recommended for remote sensing images having a high 
resolution for classification. Following recent enhancements to 
CNN architecture, convolutional layers with minimum kernels 
have been utilized to construct efficient CNN architecture.9,10 
Experimentations on the SAT datasets proved that it could 
efficiently and quickly learn features for handling intra-class 
diversity with minimum convolutional kernels. Moreover, deeper 
convolutional layers permit spatial relationship spontaneous 
modeling.11 Likewise, aircraft recognition technique relying on 
SVM12 and two-layered SAM (Saliency Analysis Model)13 has 
been introduced for the high resolution and wide area remote 
sensing images. Initially, FLS (First Layer Saliency) has been 
incorporated with spatial frequency and VSA (Visual Saliency 
Analysis)14 method relying on color space for minimizing the 
background interference. Subsequently, feature descriptors have 
been used that rely on Hu and SIFT moment for accurately 
describing the aircraft features. Lastly, the features of these objects 
have been fed into SVM, and aircraft have been recognized. 
Empirical outcomes represent the reliability and efficacy of the 
suggested system.15 To enhance the system, FCNN (Fully CNN) 
has been suggested. Outcomes explored minimum memory 
requirement and test time than a traditional framework. The 
precision rate has also been satisfactory, and the endorsed approach 
has been found valuable in effectively detecting objects in remote 
sensing images. In the future, the detection ability of the network 
has to be enhanced.16-18 

Though conventional works attempted to perform efficient 
aircraft detection, various challenges still existed due to color, the 
uncertainty of a few classes, density, and shape variations.19,20 
Hence, for efficient detection, the present study proposes RRBCNN 
(Region Regression-based CNN) that works based on a topmost 
executing detection model named faster R-CNN. This is pre-trained 
and fine-tuned with the chosen dataset. Furthermore, a data 
invariant SRM (Scale Reduction Module) is also introduced to 
resize the hierarchical feature map. This also enhances the training 
efficiency of adaptation that minimizes the feature maps' scale. 
Hierarchical features obtained from these feature maps explore the 
positioning data of the object in the overall image. In addition, 

extracted features in FC (Fully Connected) layers can efficiently 
characterize preferred information. Thus, this study mainly aims to 
frame RRBCNN that is fine-tuned for accurately detecting 
stationary aircraft. 

The major contributions of this study are listed below. 
• To detect the stationary aircraft with maximum accuracy 

using the proposed fine-tuned RRBCNN (Region Regression 
Based Convolutional Neural Network). 

• To introduce SRM (Scale Reduction Module) to minimize the 
feature-map scaling with no information loss for enhancing 
the performance of RRBCNN to yield higher accuracy in 
detecting stationary aircraft. 

• To analyze the performance of the proposed system through 
comparative analysis concerning various performance 
metrics for evaluating its efficiency. 

REVIEW OF EXISTING WORK 
Traditional systems have utilized various methods to detect 

aircraft. Accordingly, a comparative analysis has been undertaken 
considering the conventional CNN (Convolutional Neural 
Network) based model for object detection, YOLO-v3 (You Look 
Only Once-v3),21 Faster   R-CNN (Faster Region-based CNN)22 and 
SSD  (Single Shot Multi-box Detector)23 to handle limited labeled 
data for automatic detection of airplanes in the satellite images. In 
addition, data augmentation processes like cropping, rescaling, and 
rotation were employed on test images for the artificial 
enhancement of the training data. Besides, NMS (Non-Maximum 
Suppression)24 has been endorsed at the end of YOLO-v3 and SSD 
to discard various detection incidences near individual objects 
detected in overlapping regions. Trained networks have been 
employed for VHR (Very High Resolution) test images encompass 
airports and their surroundings for assessing their performance. 
Outcomes corresponding to the analysis of test region accuracy 
confirmed the efficiency of Faster R-CNN in terms of precision, 
accuracy, and F1-score. Following this, YOLO-v3 showed slightly 
minimum performance by affording a trade-off between speed and 
accuracy. Lastly, SSD explored minimum performance in 
detection. However, it was effective in localizing the object. Results 
have also been assessed concerning detection accuracy and object 
size, which confirmed that medium and large-size airplanes had 
been detected with maximum accuracy.25 Conventional works have 
used different techniques. Correspondingly, the edge box algorithm 
has been used to detect an object that supports edge information for 
object detection and has also been robust to variation in the object 
size. CNN has been suggested for automatically classifying images 
that efficiently learn the optimal features from huge data. Besides, 
CNN has been uniform to minor shifts and rotations in the target 
object. Motivating empirical outcomes have been attained on a 
large dataset. Better recall and precision rate of the system explored 
its efficiency.26 In addition, a scheme to detect aircraft relying on 
CNN and corner clustering has been suggested. It has been 
partitioned into two major parts: classification and regional 
proposal. Initially, candidate regions get generated through mean 
shift clustering algorithms. Subsequently, CNN has been utilized to 
extract features, and candidate regions that probably comprise 
aircraft have been classified. In comparison to traditional 
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methodologies like SS (Selective Search) + CNN, edge box +CNN 
and HOG (Histogram of Oriented Gradient) + SVM (Support 
Vector Machine), recommended approach possesses maximum 
efficiency and accuracy as it could automatically learn relevant 
features from large data and afford better outcomes.27,28 

 Likewise, an aircraft detection method in the remote sensing 
images has been endorsed that relies on deep ResNet (Residual 
Network) and SV coding. Initially, a variety of ResNet having 
minimum layers have been outlined for enhancing the feature map's 
resolution, and the multi-level convolutional features have been 
incorporated into the information feature depiction for the region 
proposal. Concurrently, HOG has been extracted with SV coding 
that supports CNN to perform effective feature extraction for 
efficient classification. Analysis has been undertaken on the remote 
sensing dataset. Empirical results explored satisfactory outcomes 
even on complex backgrounds.29 Similarly, an approach has been 
suggested for vision-based long-range aircraft detection. Deep 
CNN has been trained to learn visual features of aircraft by mid-air 
flight data and head-on collision encounters amongst two-winged 
aircraft. Then, a method has been recommended that integrated the 
learned features with the handcrafted features utilized by 
conventional study. Lastly, performance analysis has been 
undertaken on real flight data from UAV (Unmanned Aerial 
Vehicle), which is enhanced better than traditional systems with no 
extra false alarms 30. In addition, a framework based on CNN and 
reinforcement learning has been endorsed. Aircraft in the remote 
sensing images could be robustly and accurately positioned with the 
assistance of a search method that the candidate region has 
dynamically minimized to accurate aircraft location. The detection 
framework solves the complexities faced by traditional 
reinforcement learning techniques to detect specified objects. To 
enhance the system further, restricted edge boxes have been 
adopted that could produce candidate boxes of high quality by prior 
knowledge of the aircraft. Subsequently, smart detection agent has 
been trained by apprenticeship and reinforcement learning. The 
detection agent correctly positions aircraft within various actions. 
This also performs better in comparison to the greed approach. 
Finally, the CNN model that detects the probability produced in 
detecting aircraft has been recommended. Experimentations 
represented the efficiency and accuracy of the endorsed outline.9 
An efficient framework for aircraft detection relying on CNN has 
been employed to detect multiple targets in complicated scenes. 
CEdge Boxes (Constrained EdgeBoxes) have been designed to 
produce many target candidates precisely and quickly. Then, to 
solve the demerits of utilizing traditional classifiers and handcrafted 
features, an altered GoogleNet integrated with F-RCNN has been 
explored for extracting valuable features to perform effective 
detection. Furthermore, an ensemble and multi-model technique 
have been suggested to minimize FAR (False Alarm Rate) induced 
by unbalanced complex background and target distribution. 
Extensive experimentations undertaken on the dataset attained by 
QuickBird exhibited the superiority of the suggested system to 
detect aircraft better.31  

   An efficient framework based on landmark detection has been 
suggested to improvise system performance. It possesses a robust 
ability and requires only minimum labeled data. Alteration of the 

vanilla network has been applied for landmark detection 
concurrently by regression that encodes geometric restrictions. 
Loss function has also been recommended to create a fair network 
for varied aircraft. Integrated with careful design of post-processing 
and pre-processing methods, accurate landmark positions could be 
attained. Following this, the template matching method has been 
used for target recognition. The recommended framework could 
handle various positions, backgrounds, and aircraft poses 
efficiently and effectively, confirmed by experimentations.32 

Moreover, DON (Deep patch Orientation Network) has been 
suggested to track the multi-ground target. This is general, and it 
could learn the target's orientation by relying on structural 
information in training samples. These methods influence the 
performance of detection outline into two major aspects: the 
enhancement of target detection through the patch-based model to 
localize the target in the detecting element. It also improves each 
track's motion characteristics by including orienting information as 
integrating into the tracking element. Following the DON structure, 
YOLO and FrRCNN (Faster Region CNN0 with SORT (Simple 
Online and Real-time Tracking) have been used as the case study. 
Analysis revealed that the overall prediction rate has enhanced. 

Moreover, the IDsw (Identity switches) have minimized by 
about 67% by not impacting the tracking component's 
computational complexity. Thus, the endorsed methodology has 
effectively tracked the ground targets.33 A specific algorithm for 
airplane detection has been suggested, namely R-FCN (Region-
based Fully Convolutional Networks) and KF (Kalman Filter). This 
framework has been utilized to afford a plane's location message to 
track a model. To minimize detection time, a certain area has been 
cropped in an individual frame relying on the position of the 
bounding box of the earlier frame. The detection region's scale has 
been altered based on the target size. R-FCN has been considered 
an observation model integrated with KF to modify trace 
prediction. When the identification of subsequent frames varies to 
enhance the detection rate, the bounding box arriving at the 
forthcoming frame has been adjusted after and before outcomes. 
This methodology has been confirmed efficient in 
experimentation.3,34 

Significant issues identified through the analysis of conventional 
research are listed below. 
• The definitive study suggested CNN for aircraft detection. 

However, this CNN performs detection only if patch input has 
been the target aircraft. However, it has not altered its 
respective positions found by the clustering center. Therefore, 
border regression must be analyzed to adjust the border 
following the aircraft size and enhance the accuracy.27  

• Missed detections have to be reduced by using varied ground 
target description levels by deep layers of the network 
corresponding to detector elements to enhance aircraft 
tracking performance.33  

With persistent exploration and improvement of DL (Deep 
Learning), few frameworks have evolved. Hence, the subsequent 
stage must improve conventional network techniques. In addition, 
training time and model parameters increase with the enhancement 
of network layers. Therefore, how network structure can be 
optimized for balancing the contradiction between efficiency and 
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performance has been the key challenge that 
must be considered in the future.5 

METHODOLOGY 
The research aims to introduce a learning 

classification methodology that detects 
stationary ground aircraft. Though conventional 
works attempted to detect aircraft, they lacked 
accuracy. To solve this, the present work 
proposes RRBCNN (Region Regression Based 
Convolutional Neural Network) and SRM (Scale 
Reduction Module); the overall block diagram of 
the proposed work is given in figure 1. 
RRBCNN takes bounding boxes throughout the 
target objects with their class labels. This 
encompasses the region-based network; it acts as 
an attention network to detect the region. Image 
is taken as the input. Then, it is processed based 
on RCNN to classify the regions efficiently by 
saving time by sharing convolutional layers. The 
model is pre-trained with the chosen dataset. 
Subsequently, it is fine-tuned with respective 
training data. Random splitting is accomplished 
with validation and training to tune the learning rate and perform 
effective prediction. SRM is also designed for downscaling feature 
maps, which enhances the training rate. 
CNN (Convolutional Neural Network) 

CNN is the class of DL-NN (Deep Learning-Neural Networks).36 
It is usually an efficient algorithm, especially in the image-
processing domain. Currently, these algorithms are best for 
automated image processing. These also possess specialized 
applications in video and image recognition. It is also mainly used 
in image analysis, object detection, segmentation, and image 
recognition. Three kinds of layers in CNNs exist, as listed below, 

Convolutional layer: Each input neuron in a general NN is 
associated with a subsequent hidden layer. Moreover, only a small 
region of neurons of the input layer connects with the hidden layer 
neuron.  

Pooling layer: it is utilized for dimensionality reduction of the 
feature map. Multiple pooling and activation layers exist within 
CNN's hidden layer. Generally, this layer has been called a sub-
sampling layer. It transfers the feature maps (input) to their 
corresponding output with minimum sample numbers.  

FC (Fully Connected) layer: these layers exist from the last few 
network layers. Input to the FC layer is output from the flattened 
convolutional or pooling layer. Then, this is fed into the FC layer. 
Features from numerous pooling and convolution layers get 
processed with traditional CNN structures. In this context, ANN 
(Artificial Neural Network) is linked to individual weights of 
earlier layers. A schematic depiction of CNN layers in their overall 
structure is given in figure 2, where the input image that gets fed 
into various CNN layers performs learning to perform 
classification. 

The overall algorithm of typical CNN is given in algorithm-I. 
Next, independent variable sequences are taken as input, and their 
standard deviation is computed. Lastly, the data and its standard 

deviation are divided. Then, the map size is computed by step 2. 
Following this, CNN has been set with the input layers and its sub-
sampling layers as per step 3. Subsequently, training samples are 
executed and given in step 4. Finally, test samples have been 
executed for testing. 

The algorithm I: CNN 

Input: Independent variable sequence ai
j = (a1

j + a2
j + ⋯+ ai

j) 

Output: CNN construct li+s
j = �li+1

j + li+2
j + ⋯+ li+s

j � 

Step-1: Initially, read the input data and find its standard 
deviation. Finally, divide the data by the computed standard 
deviation. 

Step 2: Compute map size. 
Mapsize = cons�log3(data_size)�

− 1 is the overall variables number. 

Then, its loss function is given by, 

Loss: Ab =
1  
2 ��uib − vib�

2
r

i=1

=
1
2 �ub − vb�2

2 

Step 3: Set CNN with sub-sampling and input layers, 
δD = (XD+1)RδD+1f′(gD) 

Step-4: Execute training samples given by, 
Ncc = cnntrain(cnn, Ra, Rv, choose); 

�

∂A
∂XD = aD−1(δD)R

∆XD = η
∂A
∂XD

 

Step-5: Execute test samples, initiate the test, 

ZtD = f�� akD−1ijtD + dtD
kϵJt

� 

 
Figure 1. Overall view of the proposed RRBCNN with SRM 

 
Figure 2. CNN architecture35 
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RRBCNN (Region Regression-Based Convolutional Neural 
Network) 

Initially, RRBCNN extracts numerous regional proposals from 
the input image, class labeling, and bounding boxes. Subsequently, 
CNN is utilized for performing forward propagation on individual 
region proposals for feature extraction. Then, features of the 
regional proposal are utilized for class prediction, thereby exploring 
the bounding box. This proposed algorithm possesses merit over a 
generation of the random proposal as it restricts the proposals with 
high recall. The architecture of RRBCNN and its internal processes 
are shown in figure.3, where the source image and target domain 
are fed into CNN blocks. The introduced algorithm employs feature 
alignment components on proposal and domain features. For the 
hierarchical alignment module of the domain feature, various sub-
modules of the adversarial classifier are executed on block 3, block 
four and block 5. To minimize the size of feature maps, SRM is 
used. This is then fed into RPN (Regional Proposal Network), 
which comprises classification and regression prediction. Then, it 
is given to ROI pooling and then to FC layers. Finally, classification 
scores and the bounding box outcomes with respective features for 
domain classifiers are attained. 

Thus, RRBCNN performs several steps for predicting aircraft by 
bounding boxes. Accordingly, this proposed algorithm is intended 
to compute localization confidence with the location that will assist 
NMS (Non-Maximum Suppression). This network identifies 
Gaussian distribution and bounding box positioning and is given by 
equation 1. 

QΘ(a) = 1/2πσ2e−
(a−ay)2

2σ2         (1) 

Where 𝑎𝑎𝑦𝑦 represents the estimation of bounding box positioning, 
standard deviation (𝜎𝜎) computes uncertainty in estimation afforded 
by FC layers on fast RCNN and the final layer. In addition, the loss 
function is utilized rather than ReLU for avoiding 𝜎𝜎 = 0. When 
𝜎𝜎 = 0, the network has extreme confidence regarding computed 
bounding box positioning. This can also be expressed as Gaussian 
distribution, a Dirac-delta function given by equation 2. 

QE(a) = δ(a − ai)    (2) 

Where 𝑎𝑎𝑔𝑔 indicates ground-truth bounding box positioning. 
The aim of localizing objects in this condition is to compute 𝛩𝛩, 

and is given by equation.3. 
Θ =  arg min  EKL(QE(a)||PΘ(a))  (3) 

Loss function (𝐴𝐴𝑟𝑟) is used for the bounding box regression and 
is computed by equation. Four and equation 5. 
Ar =  EKL(QE(a)||QΘ(a))     (4) 

�QE(a)log
QE(a)
QΘ(a) dx 

=−∫QE(a)log QΘ(a)dx + ∫QE(a)logQE(a)dx 

=−∫QE(a)log QΘ(a)dx + ∫B(QE(a)) 

=−logQΘ(ai) + B(QE(a)) 

= (ai−ay)2

2σ2
+ 1

2
log(σ2) + 1

2
log(2π) + B(QE(a))                    (5) 

When location (𝑎𝑎𝑦𝑦) is inaccurately estimated, the variance (σ2) 
is expected to be small so that loss will also be minimum. 
1
2

log(2𝜋𝜋) + 𝐵𝐵(𝑄𝑄𝐸𝐸(𝑎𝑎)) does not disturb decision-making as it does 
not rely on the estimated parameter (Θ). Hence, it is given by 
equation.6. 

EKL(QE(a)||PΘ(a))∞�ai−ay�
2

2σ2
+ 1

2
log(σ2)    (6) 

When 𝜎𝜎 =  1, loss reduces to standard Euclidean loss and is 
given by equation.7. 

EKL(QE(a)|�PΘ(a)�∞ �ai−ay�
2

2
       (7) 

Loss varies concerning location confidence and location 
estimation and is given by equation.8 and equation.9. 

 d
dσ

EKL(QE(a)|�PΘ(a)� = �ay−ai�
2

σ−3
− 1

σ
                  (8) 

 d
day

EKL(QE(a)|�PΘ(a)� = �ay−ai�
2

σ2
  (9) 

Conversely, as σ exists in denominators, gradient occasionally 
could explore at the initiation of the training. To eliminate this 
issue, the network detects 𝛼𝛼 =  1/𝜎𝜎2  rather than 𝜎𝜎. Following the 
batch normalization, a small constant ∈ = 0.0001 is integrated into 
the long-term to prevent it from becoming negative infinite and is 
given by equation 10. 

 EKL(QE(a)|�PΘ(a)�∞
α
2 �ai − ay�

2 −
1
2

log (α + ϵ) 

=  
d

day
EKL(QE(a)|�PΘ(a)� = α�ay − ai� 

= d
dα

 EKL(QE(a)|�PΘ(a)� =

�ay−ai�
2

2
− 1

2(α+∈)
  (10) 

For |𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑦𝑦 |  >  1, loss 
identical to smooth 𝐴𝐴1loss 
stated in fast R-CNN and is 
given by equation.11. 
Ar = α ��ai − ay� −

1
2
� −

1
2

log (α+∈) (11) 
 

Figure 3. Architecture of RRBCNN and its internal process 
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To use loss, parameterizations are adopted corresponding to 
𝑎𝑎1, 𝑏𝑏1,𝑎𝑎2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏2 coordinates rather than 𝑎𝑎, 𝑏𝑏,𝑚𝑚, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 
coordinates utilized by R-CNN and are given by equation 12. 

 
 ua1 = a1−a1c

mc
 , ua2 = a2−a2c

mc
  

ub1 = b1−b1c
dc

 , ub2 = b2−b2c
mc

                                       

ua1∗ = a1∗−a1c
mc

 , ua2∗  = a2∗−a2c
mc

  

ub1∗ = b1∗−b1c
dc

 , ub2∗  = b2∗−b2c
mc

  (12) 

Where ua1, ub1,ua2, ub2 indicate predicted locations (that is, ay 
in equation.1), ua1∗ , ub1∗ , ua2∗ , ub2∗  represent ground-truth locations 
(that is, ai in equation.2). Moreover, a1c, a2c, b1c, b2c,  mc, dc exist 
from anchor box, a1, b1, a2, b2  from the corresponding predicted 
box. Finally, it is noted that 𝜎𝜎 (standard deviation) is detected after 
bounding box normalization.  

SRM (Scale Reduction Module) 
For efficient training of hierarchical domain-feature alignment, 

SRM is used by RRBCNN, which intends to downscale feature 
maps with no information loss.  

This module performs two main steps, as discussed below. 
• 1x1 convolutional layer is executed to minimize the 

feature map's channel numbers in individual blocks.  
• This step attains the features of the domain information 

to reduce the feature dimensions for effective training.  
• Calibrating the features through scale reduction during 

the enhancement of the feature map's channel 
minimizes the size of the training set and improves 
feature dimensionality.  

Furthermore, S ∗ S adjacent pixels from the feature maps are 
collected to generate new pixels. This step assists in easier 
computation with minimum parameters, thereby improvise training 
efficiency. The subsequent step is framed as per equation.13. 
E(x,y,z)
D = E

x×b+z%b2%b,y×b+�z%b2
b �,[z%b

2]
A  (13) 

Where EA represents feature maps before the second element, 
moreover, (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) indicates the element on the cth feature map 
positioned at(𝑥𝑥, 𝑦𝑦), count from0. The ED indicates scale-minimized 
feature maps, and b represents the sampling factor that denotes the 
feature map's adjacent (𝑏𝑏𝑥𝑥𝑏𝑏) pixels. This is merged into a single 
feature. SRM has parameters only in the initial element, and the 
parameters get minimized while efficiency in training gets 
enhanced. 

RESULTS AND DISCUSSION 
The results obtained from the execution of the introduced system 

are discussed in this section with dataset description, performance 
metrics, experimental results, and comparative analysis.  

Dataset Description 
The study considered the planes-net dataset taken from 

https://www.kaggle.com/rhammell/planesnet This dataset intends 
to address the complex task associated with aircraft detection in 

satellite images. Automating this process could solve several 
challenges, like defense intelligence and airport monitoring for 
traffic and activity patterns. The dataset is in JSON format. Loaded 
objects comprise data, labels, scene ids, and location lists. 

 
Table 1. Dataset image description with a class label  

Class Label Number of Images Image Size / Type 

Plane 8,000 20×20 / RGB 

Not Plane 24,000  

  
Each image filename has a format: (label) (scene_id) 

(longitude_latitude).png 
• Label: Value 0 or 1 indicating "no-plane" or "plane" 

class. In addition, the class label, number of images, 
and type or size of the image are given in table-1. 

• scene_id: image-chip was retrieved from the unique ID 
of the planet scope visual scene. This could also be 
utilized for discovering and downloading the overall 
scene.  

• longitude_latitude: Latitude and longitude 
coordinates of the image's center point with values 
partitioned by an underscore. 

 
Sample images of the dataset 

The considered dataset encompasses images with class labels as 
"planes" or "not planes," as shown in figure 4 and figure 5. In 
addition, a specific image is shown in figure 6 to provide a clear 
view of images in the dataset. 

 

 
Figure 4. Planes 

 
Figure 5. Not Planes 

  
Figure 6. Image from planes, not dataset 
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Performance Metrics 
The metrics considered for analyzing the performance of the 

proposed system are discussed in this section. 
AC (Accuracy) 
It is defined as the computation of overall correct classification 

and is given by equation.13. 
AC = number of  aircraft_detected

number of aircraft
∗ 100%  (13) 

FPR (False Positive Rate) 
It is described as a proportion of incorrect and negative cases 

identified as positive in respective data. It is given by equation.14. 
FPR = number of  false aircraft_detection

number of aircraft_detected
∗ 100% (14) 

MR (Missing Rate) 
MR is defined as the ratio of uncertainty resulting from total 

uncertainty or missing data and is given by equation.15. 
MR = number of  aircraft_missing

number of aircraft
∗ 100% (15) 

ER (Error Ratio) 
The proportion at which error occurs is termed ER and is given 

by equation.16. 
ER = MR + FPR    (16) 

Average processing time (T) 
It is stated as the computation that permits the realization of the 

time taken for processing stepwise procedures for aircraft detection. 
Precision and Recall 
It is the proportion of accurate detection outcomes, whereas 

recall indicates the proportion of the true objects detected and is 
given by equation.17 and equation.18. 
Precision = True Positive

True Positive+False Positive
  (17) 

Recall = relevant image∩retrieved image
 relevant image

  (18) 

Sensitivity 
It indicates positive segments which are suitable detected and is 

given by equation.19. 
Sensitivity = True Positive

True Positive+False Negative
 (19) 

Specificity 
It is stated as the quality or state of being unique and specific to 

groups or individuals and is given by equation.20. 
Specificity = True Negative

True Negative+False Positive
 (20) 

FN (False Negative) rate 
FN or FN error is the test outcome that wrongly denotes that a 

specific state does not support it. 

EXPERIMENTAL RESULTS 
The proposed system is experimentally implemented, and the 

obtained results are given in figure 7. The actual image and the 
detected image surrounded by a bounding box are presented, which 
explores the efficiency of an introduced system in detecting aircraft. 

 
Original image Detected image 

  

  

  

Figure 7. Experimental results 

 
Comparative analysis 
Comparative analysis is undertaken in terms of important 

performance metrics for evaluating the effectiveness of the 
introduced system. Obtained results are discussed in this section. 
Accordingly, DBN (Deep Belief Network), BING+CNN 
(Binarized Normal Gradients) +CNN, Faster R-CNN (Faster 
Region-based CNN), YOLOv2 and Multi-layer FF (Multi-layer 
Feature Fusion), and NMS algorithm have been the traditional 
algorithms considered for analysis. The results of this analysis are 
shown in table-2 and graphically represented in figure 8. 

The results found that DBN explored 79.54% AC, BING+CNN 
showed 84.25% as AC rate, Faster R-CNN exposed 86.28% AC, 
YOLOv2 exhibited 90.05% AC, and Multi-layer FF and NMS 
explored 94.25% AC. Though conventional methods showed better 
and more satisfactory AC, the proposed system outperformed 
traditional methods by exploring 99.12% AC, as clearly presented 
in figure.8. On the contrary, FPR, MR, ER, and T(s) has to be 
minimum for an algorithm to be efficient. Correspondingly, 
analytical outcomes showed the efficiency of an introduced system 
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in terms of FPR, T(s), MR, and ER as it showed a minimum FPR 
of 4.78%, MR of 4.98%, ER of 10.25%, and T(s) of 0.02%. This 
rate is found to be less than conventional methods. It is graphically 
presented in figure.9. For instance, DBN showed maximum FPR at 
a rate of 24.13%,5 which showed its ineffectiveness over the 
proposed work. Thus, high accuracy and low FPR, T(s), ER, and 
MR rates than existing methodologies have confirmed the efficacy 
of the proposed system. 

 
Table-2. Comparative analysis concerning performance metrics 5 

Method AC 
(%) 

FPR 
(%) 

MR 
(%) 

ER 
(%) 

T(s) 

DBN 79.54 24.13 20.46 44.59 171.2
5 

BING+CNN 84.25 18.68 15.75 34.43 6.41 

Faster R-
CNN 

86.28 8.76 13.72 22.48 0.15 

YOLOv2 90.05 6.26 9.95 16.21 0.03 

Multi-layer 
FF and NMS  

94.25 5.59 5.75 11.34 0.16 

Proposed 
method 

99.12 4.78 4.98 10.25 0.02 

 
In addition, a general CNN and the proposed RRBCNN have 

been comparatively analyzed concerning the accuracy, specificity, 
FN rate, FP rate, and sensitivity. Obtained outcomes are presented 
in table-3. It is also graphically presented in figure 10 and figure 
11.  

 
Table 3. Comparative analysis in terms of performance metrics 35 

Model Accuracy Sensitivity Specificity FP Rate FN Rate 

CNN 98.4 98.62 98.13 0.0187 0.0138 

Proposed 99.12 99.25 99.05 0.0156 0.0115 

 

  
Figure 8. Analysis of the proposed and existing work5 in terms of 
accuracy 

  
Figure 9. Analysis of the proposed and existing work 5 concerning 
significant metrics 

 
From the results, it is explored that CNN showed 98.4% 

accuracy. In comparison, the proposed work exhibited 99.12% 
accuracy; the sensitivity rate of CNN was found to be 98.62%, 
whereas the introduced system showed 99.25%, specificity rate of 
CNN was 98.13%. In comparison, the proposed method explored 
999.05%. Similarly, the introduced system's FP and FN rates have 
been efficient. In this case, FP and FN rates must be minimum to 
confirm the efficacy of a method. Accordingly, RRBCNN explored 
0.0156 as the FP rate, less than the existing CNN that showed 
0.0187% FP. 

 
 

 
Figure 10. Analysis of the proposed and existing work concerning the 
accuracy, specificity, and sensitivity 35 
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Figure 11. Analysis of the proposed and existing work concerning FN 
and FP rate 35 

 
Additionally, the analysis is carried out by considering existing 

methods such as the Rotation Invariant Parts Based Model, DBN, 
traditional variants of ResNet, Only conv4_x+HOG, Faster R-
CNN, and Faster R-CNN+ResNet-50. These techniques are 
analyzed in terms of recall and precision. Obtained outcomes are 
shown in table-4 and graphically presented in figure 12. 

 
Table 4. Comparative analysis in terms of precision and recall 29 

Method Precision (%) Recall 
(%) 

Rotation Invariant Parts-Based 
Model 

67.3 59.2 

Deep Belief Networks 80.6 63.6 

Faster R-CNN  87.8 82.4 

Faster R-CNN+ResNet-50  88.6 83.7 

Only conv4_x+HOG 89.6 84.1 

An existing variant of ResNet 90.3 86.8 

Proposed Method 93.5 91.9 

 

 
Figure 12. Comparative analysis of the proposed and existing work 
for recall and   precision 29 

From the analytical outcomes, the existing DBN showed 80.6% 
precision; only conv4_x+HOG exposed 89.6% as the precision 
rate, while traditional variants of ResNet exhibited 90.3%. 
However, the introduced methodology explored high precision of 
about 93.5%, which is better than conventional methods. On the 
contrary, the recall rate of existing variants of ResNet has been 
high, showing 86.8%. However, the proposed system outperformed 
this by showing 91.9% recall. 

Thus, the comparative analysis undertaken with three 
conventional works5,29,35 explored the efficiency of the proposed 
system to existing works in terms of AC, MR, ER, FPR, T(s), 
precision, recall, sensitivity, FN rate, and specificity. In addition, 
RRBCNN introduced used SRM to downscale the feature maps that 
improve the training rate. This eventually enhances the prediction 
rate. Due to this, the efficient performance achieved by the 
introduced system is confirmed through comparative analysis. 

CONCLUSIONS  
The research mainly aimed to detect aircraft with better accuracy 

based on DL and image processing. For this purpose, RRBCNN 
and SRM were proposed. To effectively train the hierarchical 
domain-feature alignment, SRM was utilized by RRBCNN, which 
downscaled the feature maps to avoid information loss. This 
process has made it explore better outcomes. However, to confirm 
the efficiency of the proposed work, analysis was undertaken 
concerning AC, recall, sensitivity, precision, FPR, FN, ER, MR, 
T(s), and specificity. Three conventional types of research were 
considered for analyzing the performance of the introduced system. 
The outcomes revealed the efficiency of the proposed system that 
explored maximum AC, specificity, recall, sensitivity, and 
precision, while exploring minimum FPR, FN, ER, MR, and T(s). 
Thus, the proposed method efficiently detected aircraft with 
bounding boxes, showing high accuracy of 99.12%. This effective 
performance has made it highly suitable for aircraft detection and 
classification. Various other DL algorithms can also be focused on 
in the near future to improve accuracy. 
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