2023 10(3). 543

Novel fluorinated piperazine based-amino acid derivatives as antiplasmodial agents: Synthesis, bioactivity and computational studies.

Charu Upadhyay¹, Shreya Bhattacharya², Sumit Kumar¹, Dharmender Kumar¹, Neha Bhadula¹, Brijesh Rathi^{*3,4}, Agam Prasad Singh^{*2}, Poonam^{*1,4}

¹Department of Chemistry, Miranda House, University of Delhi, Delhi-110007, India.

²Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India

³Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India.

⁴Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, 110007, India

*Corresponding Authors

Brijesh Rathi, Ph.D.

Orcid ID: 0000-0003-2133-8845

brijeshrathi@hrc.du.ac.in

Agam Prasad Singh, Ph.D.

E-mail: singhap@nii.ac.in

Poonam, M.Phil., Ph.D.

Orcid ID: 0000-0002-3759-1057 E-mail: poonam.chemistry@mirandahouse.ac.in

Table of Contents:

Entry	Page No.
Figure S1 . ¹ H NMR spectrum of 4 .	S4
Figure S2. ¹³ C NMR spectrum of 4.	S4
Figure S3. ¹ H NMR spectrum of 5.	S 5
Figure S4. ¹³ C NMR spectrum of 5.	S 5
Figure S5. ¹ H NMR spectrum of 6.	S6
Figure S6. ¹³ C NMR spectrum of 6.	S6
Figure S7. ¹ H NMR spectrum of 7.	S7
Figure S8. ¹³ C NMR spectrum of 7.	S7
Figure S9. ¹ H NMR spectrum of 9a.	S8
Figure S10. ¹³ C NMR spectrum of 9a	S8
Figure S11. ¹ H NMR spectrum of 9b	S9
Figure S12. ¹³ C NMR spectrum of 9b	S9
Figure S13. ¹ H NMR spectrum of 9c	S10
Figure S14. ¹³ C NMR spectrum of 9c	S10
Figure S15. ¹ H NMR spectrum of 9d	S11
Figure S16. ¹³ C NMR spectrum of 9d	S11
Figure S17. ¹ H NMR spectrum of 9e	S12
Figure S18. ¹³ C NMR spectrum of 9e	S12
Figure S19. ¹ H NMR spectrum of 10a	S13
Figure S20. ¹³ C NMR spectrum of 10a	S13
Figure S21. ¹ H NMR spectrum of 10b	S14
Figure S22. ¹³ C NMR spectrum of 10b	S14
Figure S23. ¹ H NMR spectrum of 10c	S15
Figure S24. ¹³ C NMR spectrum of 10c	S15
Figure S25. ¹ H NMR spectrum of 10d	S16
Figure S26. ¹³ C NMR spectrum of 10d	S16
Figure S27. ¹ H NMR spectrum of 10e	S17
Figure S28. ¹³ C NMR spectrum of 10e	S17
Figure S29. ¹ H NMR spectrum of 11a	S18
Figure S30. ¹³ C NMR spectrum of 11a	S18
Figure S31. ¹ H NMR spectrum of 11b	S19
Figure S32. ¹³ C NMR spectrum of 11b	S19
Figure S33. ¹ H NMR spectrum of 11c	S20
Figure S34. ¹³ C NMR spectrum of 11c	S20
Figure S35. ¹ H NMR spectrum of 11d	S21
Figure S36. ¹³ C NMR spectrum of 11d	S21
Figure S37. ¹ H NMR spectrum of 11e	S22
Figure S38. ¹³ C NMR spectrum of 11e	S22
Figure S39. ¹ H NMR spectrum of 12a	S23
Figure S40. ¹³ C NMR spectrum of 12a	S23
Figure S41. ¹ H NMR spectrum of 12b	S24
Figure S42. ¹³ C NMR spectrum of 12b	S24
Figure S43. ¹ H NMR spectrum of 12c	S25
Figure S44. ¹³ C NMR spectrum of 12c	S25
Figure S45. ¹ H NMR spectrum of 12d	S26
Figure S46. ¹³ C NMR spectrum of 12d	S26

Figure S47. ¹ H NMR spectrum of 12e	S27
Figure S48. ¹³ C NMR spectrum of 12e	S27
Figure S49. HRMS spectrum of 12c.	S28
Figure S50. HRMS spectrum of 12e.	S29
Table S1. ADME profile of synthesized analogues (9a-9e, 10a-10e, 11a-11e,	S29-S30
12a-12e.)	

Figure S2. ¹³C NMR spectrum of 4.

Figure S3. ¹H NMR spectrum of 5.

Figure S6. ¹³C NMR spectrum of 6.

Figure S7. ¹H NMR spectrum of 9a.

Figure S9. ¹H NMR spectrum of 9b.

Chemical Biology Letters

Figure S11. ¹H NMR spectrum of 9c.

S9

Figure S13. ¹H NMR spectrum of 9d.

Figure S15. ¹H NMR spectrum of 9e.

Figure S17. ¹H NMR spectrum of 10a.

Figure S18. ¹³C NMR spectrum of 10a.

Figure S19. ¹H NMR spectrum of 10b.

S13

Figure S21. ¹H NMR spectrum of 10c.

Figure S22. ¹³C NMR spectrum of 10c.

Figure S23. ¹H NMR spectrum of 10d.

Figure S25. ¹H NMR spectrum of 10e.

Figure S28. ¹³C NMR spectrum of 11a.

Figure S29. ¹H NMR spectrum of 11b.

S18

Figure S31. ¹H NMR spectrum of 11c.

Figure S33. ¹H NMR spectrum of 11d.

Figure S34. ¹³C NMR spectrum of 11d.

Figure S35. ¹H NMR spectrum of 11e.

Figure S36. ¹³C NMR spectrum of 11e.

Figure S37. ¹H NMR spectrum of 11e.

Figure S39. ¹H NMR spectrum of 12a.

Figure S40. ¹³C NMR spectrum of 12a.

Figure S41. ¹H NMR spectrum of 12b.

Figure S42. ¹³C NMR spectrum of 12b.

Figure S43. ¹H NMR spectrum of 12c.

Figure S44. ¹³C NMR spectrum of 12c.

Figure S45. ¹H NMR spectrum of 12d.

Figure S46. ¹³C NMR spectrum of 12d.

Figure S47. ¹H NMR spectrum of 12e.

Chem. Biol. Lett. 2023, 10(3), 543

Supporting Information

Figure S49. HRMS spectrum of 12c.

S28

Chem. Biol. Lett. 2023, 10(3), 543

Figure S50. HRMS spectrum of 12e.

Entry	Cmpd.	MW	n	n	Nrot	TPSA	m	DrugL	BBB	Ν
No.	_		ON	OHNH			LogP	Score	Score	Vio.
1	9a	514.63	6	3	13	94.14	2.29	-0.16	3.20	1
2	9b	542.69	6	3	14	94.14	2.67	-0.26	3.17	1
3	9c	556.71	6	3	15	94.14	2.86	-0.18	3.16	1
4	9d	590.73	6	3	15	94.14	3.19	-0.30	2.82	1
5	9e	540.67	6	2	12	85.35	2.67	0.54	3.55	1
6	10a	564.64	8	3	14	94.14	2.67	-0.46	3.18	1
7	10b	592.69	8	3	15	94.14	3.05	-0.56	3.17	1
8	10c	606.72	8	3	16	94.14	3.23	-0.47	3.17	1
9	10d	640.74	8	3	16	94.14	3.55	-0.60	2.72	1
10	10e	590.68	8	2	13	85.35	3.05	0.22	3.54	1
11	11a	414.52	5	3	9	81.83	1.72	1.09	3.71	0
12	11b	442.57	5	3	10	81.83	2.13	0.99	3.70	0
13	11c	456.6	5	3	11	81.83	2.34	1.06	3.69	0

Table S1. Physicochemical properties (ADME), Drug-likeness model score (DrugL Score); and Blood-Brain Barrier (BBB) Score of all the synthesized compounds

Chem. Biol. Lett. 2023, 10(3), 543

Supporting Information

14	11d	490.61	5	3	11	81.83	2.7	0.88	3.28	0
15	11e	440.55	5	3	9	67.84	2.13	1.12	4.11	0
16	12a	464.52	7	3	10	81.83	2.13	0.64	3.72	0
17	12b	492.58	7	3	11	81.83	2.54	0.54	3.70	0
18	12c	506.6	7	3	12	81.83	2.73	0.62	3.68	1
19	12d	540.62	7	3	12	81.83	3.08	0.44	3.26	1
20	12e	490.56	7	3	10	67.84	2.54	0.68	4.09	0

Cmpd. = Compound; MW = molecular weight (g/mol); nON = no. of hydrogen bond acceptor; nOHNH = no. of hydrogen bond donors; Nrot = no. of rotatable bonds; TPSA = total polar surface area; MLogP = Predicted octanol/water partition coefficient; DrugL. Score = Drug-likeness model score (0-2); BBB Score = The Blood-Brain Barrier (BBB) Score (6-High,0-Low); nVio. = no. of Lipinski violation.