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ABSTRACT 

Tiny phytochemicals 
found in different 
types of spices may 
play a significant 
role as anticancer 
drugs, particularly 
by focusing on a 
specific cancer 
receptor to 
modulate the 
cancer signaling 
cascade. We performed an in silico ADME and PASS analysis of twelve structurally different phytochemicals.  Further, an integrative 
molecular docking and structural dynamics approach was carried out against a potential cancer target: DNA methyl transferase 3-like protein.  
Adopting an amalgamation of docking, simulation study, and MM-GBSA binding energy approach, we found carnosic acid (Ca) and crocetin 
(Cr) to be the best lead molecules. Hence, Ca and Cr may be proposed as strong potential anti-cancerous compounds against DNA methyl 
transferase3-like proteins. 
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INTRODUCTION 
The cancer is the leading cause of death worldwide.1 Despite 

various progress in the emergence of new drug therapeutics and 
various combinations, none of these serve as suitable options 
during the advanced stage of cancer prevention. The targeted 
approach somewhat leads to the stopping of cell signaling 
approach.2 DNA methyl transferases catalyze the methylation of 
cytosine at the 5-position of the nitrogenous base: cytosine. In 
mammals, it is DNMT1 that plays an important role in epigenetic 
processes and mainly methylates newly synthesized DNA. 
During cancer, the level of expression of some of the types of 
DNA methyl transferases like DNMT3B, DNMT3A, and 
DNMT3L increases and are responsible for hypermethylation of 
tumor suppressor genes of promoter region rich in CpG.2,3  

Various studies have reported that the inhibition of DNA methyl 
transferase through various drugs has benefited the cancer patient 
by reducing tumor size. This has also allowed more expression 
of tumor suppressor genes in those patients and thus DNA methyl 
transferase has been a potential cancer target for various anti-
cancer drugs.3 Apart from many synthetic drugs, phytochemicals 
from dietary origins have tremendous potential to inhibit DNA 
methyl transferases in a cancer cell and thus can be a very good 
option for cancer. The role of DNA methyltransferase-like 
protein (DNMT3L) is very minimal. This enzyme act as a 
stimulatory factor and its function is to modulate DNMT3a 
activity.3,4 

Bioactive compounds in various plant species play a 
significant role in human beings. Compounds with high 
molecular weight and low biological activities such as tannins, 
saponins, and quinones, and the others are those of low molecular 
weight and high biological activities such as coumarins, 
flavonoids, terpenoids, and alkaloids.5-7 Various research 
suggests that many new drugs have been generated from natural 
products, particularly from plant origin and these small 
molecules play a significant role in different properties linked 
with biochemical activities. These molecules are applied as 
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therapeutics for the cure of different diseases including cancer. 
Even small molecules have been targeted for activating DNA 
methylation repressed genes.8,9 

Studying different properties like absorption, distribution, 
metabolism, elimination, and toxicity of drug-like molecules 
before experimenting in the laboratory gives researchers a wide 
option to screen hundreds and thousands of molecules through 
computer-based in-silico studies. These studies have a lot of 
contribution in determining the viability of drugs screened 
particularly for their oral behavior and their role in the 
distribution and the final destination of reaching and binding with 
the target. Every year, nearly 50% of the drugs failed in clinical 
trials because of their incomplete in silico screening of 
absorption, distribution, metabolism, elimination, and toxicity 
(ADMET) properties.10 In this regard, Swiss ADME and 
ADMET SAR provide detailed and extensive physicochemical 
profiles, medicinal properties, and ADMET properties of any 
drug molecule.11 The absorption and distribution characteristics 
of any drug are greatly affected by the solubility of that drug in 
aqueous media. As 75 percent of our body is composed of water, 
so drugs soluble in water are more easily transported to reach 
targets. Even the last marketing of drugs failed because of poor 
pharmacokinetic properties like stability, solubility, absorption, 
and toxicity.12 

Lipinski has proposed the very first drug likeliness feature 
which is widely known as the rule-of-five (MWT ≤ 500, log P ≤ 
5, H-bond donors ≤ 5, H-bond acceptors ≤ 10).13 A combination 
of drug-likeness, cLog P, log S, molecular weight, and toxicity 
risks makes the overall drug score for any particular drugs 
proposed as oral inhibitors. Topological polar surface area 
(TPSA)14 calculates the area of any drug which has polar 
characteristics necessary for binding with a polar region of the 
protein target. This property of the drug ensures proper 
absorption of the drugs through the plasma membrane if it is 
going to bind with the protein target inside the cytoplasm.15,16 The 
study is equally important for the study of another important 
property of drugs: cross the blood-brain barrier (BBB).17  

To keep away from harmful substances reaching the brain 
there are arrays of closely packed blood vessels surrounding the 
brain. Water, oxygen, carbon dioxide, and general anesthetics can 
easily pass into the brain through the blood-brain barrier but this 
barrier avoids other bigger molecules. Some of the small 
molecule drugs can cross the barrier and have tremendous 
potential to serve as anti-tumor drugs to treat brain tumors.18 
Drugs administered through oral routes should have a property of 
absorption through the human intestine. Many new drugs are 
screened for better absorption through computational 
approaches. Specific models for human intestine absorption can 
greatly contribute towards screening potential compounds.  
Acute oral toxicity is an important parameter to evaluate the 
efficacy of any drug. It determines how quickly any drug shows 
its side effects after consuming it for a single dose or multiple 
doses. The level of toxicity is measured within 24 hours after 
consumption of the drugs. It refers to some adverse effects that 
our body produces in response to the drugs and if there is any 
effect, the drugs are treated acutely toxic.19,20 TP 53 genes 

produce a protein called tumor suppressor protein p53.  TP53 acts 
as a marker gene for cancer diagnosis and their ability to interact 
with small phytochemicals will ensure different behavior of 
cancer cells.21  

Hence our study deals with many investigations (molecular 
docking, molecular dynamics simulation, molecular mechanics 
generalized born surface area calculations, ADMET and pass 
prediction) of small phytochemicals against one of the potential 
cancer targets: DNA methyl transferase 3-like proteins 
(DNMT3L).  

METHODOLOGY 
ADMET study 
The online software, SWISS ADME and ADMET SAR were 

chosen to predict ADME and pharmacokinetics descriptors based 
on physiological parameters, drug-like nature, and medicinal 
chemistry.11 All the studied molecules were downloaded from 
PubChem, and then their canonical SMILES were used as the 
initial information for the ADMET study using SWISS ADME 
and ADMET SAR (Table 1). A group of canonical SMILES was 
fed as input files into this software and then using the set 
algorithm, various parameters like Clog P, drug likeliness, drug 
score, TPSA, BBB, HIA, CaCO2, AMES toxicity, carcinogens, 
and acute oral toxicity have been selected for the AMET study.  
For parameters like CaCO2, AMES Toxicity, carcinogens, and 
acute oral toxicity ADMET SAR has been used for all the 
predictions. All the results were depicted in the form of an excel 
sheet which shows the probable score of all the phytochemicals 
against all the set parameters. Later detailed analyses were done 
by drawing bar graphs against all the parameters (figure 1). 

 
Table 1: Small phytochemicals from different plant species with 
their SMILE notation  

Small 
phytochemicals 

Comp 
(CID) SMILE notation Sources 

Ferulic acid 
 
 

445858   
 
 

CC(C)(C)[Si](C)(C)OC1=
C(C=C(C=C1)C=CC(=O)
O[Si](C)(C)C(C)(C)C)OC 
 

 

Syzygium 
Aomaticum 
 

Crocetin 
 

5281232 
 

CC(=CC=CC=C(C)C=CC
=C(C)C(=O)O)C=CC=C(C
)C 
(=O)O 

Crocus 
sativus 
 

Cinnamic acid 444539 
C1=CC=C(C=C1)C=CC(=
O)O 

Cinnamon 
 

Eugenol 3314 
COC1=C(C=CC(=C1)CC=
C)O 

Cinnamon 
 

Cinnamaldehyde 
 
 

637511 
 

C1=CC=C(C=C1)C=CC=
O 
 

Cinnamon 
 
 

Allicin 
 

65036 
 

C=CCSS(=O)CC=C 
 

Allium 
sativum 
 

Alpha tumerone 558173 
CC1=CC=C(CC1)C(C)CC
(=O)C=C(C)C 

Curcumin 
Longa 

Curcumin 
 
 

1013413
51 
 

CC1=C(C=C(C=C1)C=CC
(=O)CC(=O)C=CC2=CC(
=C(C=C2) 
C)[N+](=O)[O-
])[N+](=O)[O-] 
 

Curcumin 
Longa 

 
Estragole 
 8815 

COC1=CC=C(C=C1)CC=
C 

Ocimum 
basilicum 

https://pubchem.ncbi.nlm.nih.gov/compound/445858
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B 
Shogaol 
 

5281794 
 

CCCCCC=CC(=O)CCC1=
CC(=C(C=C1)O)OC 
 

Ginger 
officinale 
 

Demethoxy 
curcumin 

5469424 
 

COC1=C(C=CC(=C1)C=C
C(=O)CC(=O)C=CC2=CC
=C(C=C2)O)O 

Curcumin 
longa 

Capsaicin 
 1548943 

CC(C)/C=C/CCCCC(=O)
NCC1=CC(=C(C=C1)O)O
C 

Piper 
nigrum 

Cinnamyl 
acetate 
 

5282110 
 

CC(=O)OC/C=C/C1=CC=
CC=C1 
 

Curcumin 
Longa 
 

Alpha terpineol 
 

17100 
 

CC1=CCC(CC1)C(C)(C)O 
 

Elettaria 
cardamom
um 

Ellagic acid 
 

5281855 
 

C1=C2C3=C(C(=C1O)O)
OC(=O)C4=CC(=C(C(=C4
3)OC2=O)O)O 
 

Syzygium 
aromaticu
m 
 

6-Paradol 
 

94378 
 

CCCCCCCC(=O)CCC1=C
C(=C(C=C1)O)OC 
 

Ginger 
officinale 
 

6-Gingerol 
 

442793 
 

CCCCCC(CC(=O)CCC1=
CC(=C(C=C1)O)OC)O 
 

Ginger 
officinale 

Dillapiol(Di) 10231 
COC1=C(C2=C(C=C1CC
=C)OCO2)OC 

Foeniculu
m vulgare 

4-
Hydroxybenzoic 
acid 
 

135 
 
 

 
C1=CC(=CC=C1C(=O)O)
O 
 
 

Coriandru
m sativum 
plant 
 

Carnosic acid 
 
 

 
65126 
 
 

 
CC(C)C1=C(C(=C2C(=C1
)CCC3C2(CCCC3(C)C)C(
=O)O)O)O 
 

Rosmarinu
s officinalis 
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Figure 1: a to j SWISS ADMET analysis of the studied 
phytochemicals using SWISS ADME software  a. Calculated Log P 
prediction  b. drug likeliness studies c. drug score d. total polar 
surface area  e. aqueous solubility Log S  f.  Blood-brain barrier g. 
human intestinal absorption h AMES toxicity assay i. carcinogens j. 
acute oral toxicity  
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PASS Analysis 
Activity Spectra Prediction for Substances also known as 

(PASS) is used for the prediction of different physicochemical 
activities in cancer-defined cells and is based on the molecular 
formula of organic and biochemical compounds. PASS is a web-
based web tool (http://www.way2drug.com/) that has a training 
set of more than 200000 compounds demonstrating 3750 and 
more biological activities.27 The resulting spectrum of PASS is 
designated by Probable activity (Pa) and Probable inactivity (Pi) 
scores.29  

On the basis of the evaluation of different descriptors for 
potentially active and physiologically non-active compounds 
from those set values that undergo a defined training, two 
different possibilities are calculated for every biological activity: 
Pa - the probability of the compound being active and Pi - the 
possibility of whether the molecules are potentially inactive. 
Molecules and their information are fed one by one into the PASS 
software where based on the descriptors and parameters out files 
were generated depicting both Pa and Pi shown in figure 2. 

Molecular Docking study  
Patch Dock is a molecular docking algorithm and is based on 

the shape complementarity principle25 was used to undergo 
molecular docking procedures of different molecules. Docking 
procedures allow us to understand the potential binding abilities 
of the phytochemicals with desired cancer target: DNMT3L. The 
enzyme DNMT3L was selected as a drug target for cancer due to 
its beneficial role in DNA methylation. The 3D structure of the 
enzyme was taken from the RSCB protein data bank (PDB) with 
ID: 2PVO and with a resolution of 3.30 Å 
(https://www.rcsb.org/structure/2PV0). All the compounds 
(small phytochemicals) were downloaded from the PubChem 
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Figure 2 a-f: PASS (Prediction of Activity Spectra for Substances) 
analysis of studied phytochemicals a. Anti-carcinogenic parameters 
b. TP53 expression pattern c.   caspase 3 stimulant d.   BRAF 
expression inhibitor e.  toxicity studies   f. antimutagenic studies  
 

Table 2: Small phytochemicals with different binding energy 
released during interaction with 2PV0 

Small 
phytochemicals 
 
 

Pub Chem  
Comp ID 
(CID) 
 

Binding energy 
(Global energy) 
after  
docking with  
2PV0 
(kcal/mol) 

Sources of these 
phytochemicals 
 
  

Ferulic acid 
 
 

445858   
 
 -37.44 

 

Syzygium 
aomaticum 
 

Crocetin 
 

5281232 
 -49.27 

Crocus sativus 
 

Cinnamic acid 444539 -30.99 
Cinnamon 
 

Eugenol 3314 -29.72 
Cinnamon 
 

Cinnamaldehyd
e 
 
 

637511 
 -27.60 

Cinnamon 
 
 

Allicin 
 

65036 
 -33.27 

Allium sativum 
 

Curcumin 
 
 

10134135
1 
 -38.19 

Curcumin longa 

 
Estragole 
 8815 -29.69 Ocimum basilicum 
Demethoxy 
curcumin 

5469424 
 -48.27 Curcumin longa 

Capsaicin 1548943 -42.85 Piper nigrum 
Cinnamyl 
acetate 
 

5282110 
 -36.53 

Curcumin longa 
 

Alpha terpineol 
 

17100 
 -27.65 

Elettaria 
cardamomum 

Carnosic acid 
 

 
65126 
 

-44.72 
 

Rosmarinus 
officinalis 
 

 

database (https://pubchem.ncbi.nlm.nih.gov/) in SDF format. 
Later using an online SMILES translator, SDF format was 
converted to PDB format which was then used for the docking 
study against the cancer target. Water and other heteroatoms were 
removed to avoid unnecessary contact with the phytochemicals. 
Patch Dock molecular docking allows researchers to screen 
potential noncompetitive and uncompetitive inhibitors. The 
output file generated after the docking process was in the form of 
different interactions between the compound and the target and 
depicts the binding energy of interactions along different non-
covalent associations. Similarly different docking and binding 
pose of the selected phytochemicals against DNMT3L were 
visualized first in 2D conformation and then later by 3D 
conformation. BIOVIA Discovery Studio Visualizer was used in 
the molecular docking visualization study.26  Best-docked 
complexes (DNMLT with phytochemicals) with the highest 
binding affinities were selected for molecular dynamics (MD) 
simulations as well as Molecular Mechanics Generalized Born 
Surface Area (MM GBSA study). 

Molecular dynamics (MD) simulation  
MD simulation of ligand-protein complexes were carried out 

using the Desmond module to confirm the binding mode of the 
ligand.32 An orthorhombic simulation box of size 10 x 10 x 10 
Å3 was used to solvate the system. The 3-site transferable 
intermolecular potential (TIP3P) water model 33 with a 
minimum separation of 10 Å was specified between the box wall 
and the ligand-protein complexes. Additionally, the system was 
neutralized by adding counter ions (Na+ or Cl-), and a 
physiologically appropriate isosmotic environment was created 
by supplying 0.15 M NaCl. With a maximum of 2000 iterations 
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and a convergence requirement of 1 kcal/mol, the constructed 
system was then subjected to energy minimization utilizing the 
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithms with 
the steepest descent and limited memory.34 The minimized 
system was relaxed at 300 K temperature and 1.013 bars 
atmospheric pressure with a relaxation time of 1 ps and 2 ps, 
respectively, prior to the production run using the Berendsen 
NVT and NPT ensemble. Throughout the relaxation technique, 
the isothermal isobaric ensemble (NPT) was maintained. The 
Nose-hoover thermostat and the Martyne-Tobias-Klein barostat 
techniques were used to maintain constant temperature and 
pressure throughout the whole production run.35 The reversible 
reference system propagator algorithms (RESPA) integrator was 
used throughout the molecular dynamics simulation. The 
bonding interactions for a time step of 2 fs were calculated in the 
final production run. The Particle Mesh Ewald (PME) algorithm 
was used to determine the long-series electrostatic interactions 
during the simulation.36 The same protocol was employed for all 
complexes’ molecular dynamic studies. All simulation runs used 
the OPLS4 all-atom force field with the default settings. A near-
credible atomistic simulation of intricate biomolecular systems is 
made possible by the use of the very precise and consistent 
molecular mechanics force field known as OPLS4.37 The 
simulation interaction diagram was created utilizing the 
trajectory data that was obtained following the simulation run, 
such as interactions during simulation time, protein and ligand 
deviations in the form of root mean square deviation (RMSD) and 
protein chain fluctuation (RMSF), and the outcomes were 
examined using several MD simulation protocols.  To assess the 
reproducibility and dependability of the results, a production run 
of 100 ns with identical parameters was performed for each 
complex.  

Binding free energy calculation (MM-GBSA) 
 The MM-GBSA (Molecular Mechanics Generalized Born 

Surface Area) is a tool to compute the ligand binding energy 
within the continuum solvation model. The conformations of 
protein-ligand complexes, which spanned for 70 to 100 ns MD 
run, were used to determine the binding energy (DG bind) by 
prime modules 38, 39 using the thermal_mmgbsa.py script. The 
components of DE Molecular Mechanics are estimated based on 
a classical OPLS molecular mechanics force field. The 
calculation of free energy of binding occurs as: 

ΔGbinding = ΔGcomplex− (ΔGprotein+ΔGligand) 
Where, ΔGcomplex, ΔGprotein and ΔGligand represent the 

total free energies of the complex, the protein and the ligand 
respectively. 

RESULTS AND DISCUSSION 
In silico pharmacodynamics analysis: ADMET analysis 
Calculated Log P predicts the highest probability score for 6-

paradol, whereas demethoxycurcumin, capsaicin, carnosic acid, 
and 6-gingerol were showing similar results.  The log P value of 
a compound, s log of its partition coefficient between n-octanol 
and water log (coctanol/cwater) that measures the hydrophilicity 
of any compound.  Poor absorption or permeation is due to fewer 
hydrophilicity of the compounds and high Log P values.12,13 With 

these contexts, compounds like ellagic acid, 4-hydroxybenzoic 
acid, cinnamyl acetate, and alpha-terpineol were showing low 
probability scores and hence has the highest ability to cross the 
membrane (figure 1a). Drug likeliness study revealed that 
cinnamyl acetate, alpha-terpineol, ellagic acid, and 
hydroxybenzoic acid are better drugs than the other compounds. 
Also carnosic acid and dillapiol are next to these drugs. Although 
from the parameters like Log P and drug likeliness smallest 
compound with the least molecular weight is acting as a better 
drug. The result is shown in figure 1b. Overall drug score proves 
that demethoxycurcumin has the highest value of probability 
score far more than any other compound. The next compound is 
ellagic acid followed by all the other remaining compounds 
(figure 1c).  This study shows that all the selected compounds 
have a better ability to behave as oral drugs. TPSA is an important 
parameter that predicts different transportation properties of 
drug-like molecules. Polar surface area is defined as a summation 
of surfaces with atoms of polar nature (usually oxygen, nitrogen, 
and attached hydrogen) in a molecule.14 This parameter has been 
shown to very well match with absorption through the human 
intestine and barrier of blood-brain penetration. Except for alpha 
terpineol, all the other compounds have values lesser than 140 
angstroms squared (Å2), so these compounds have the ability to 
transport as oral inhibitors so that they can reach and bind with 
the cancer target. The probability score for TPSA has been shown 
in figure 1d Parameters like aqueous solubility15,16 predict that all 
the compounds show good solubility in a non-polar solvent and 
are partially soluble in a polar solvent. Figure 1e shows that 
cinnamyl acetate is highly insoluble in water, whereas 4-hydroxy 
benzoic acid is partially soluble in water, ether, and acetone. The 
probability of predicting features like blood-brain barrier17,18 of 
compounds like cinnamyl acetate, alpha-terpineol, 6-paradol, and 
dillapiol is quite high, which shows their ability to cross the 
barrier of brain blood and may be useful drug candidates for the 
treatment of neurological and brain disorders (Figure 1f).  Results 
from figure 1g show the ADMET probability score of human 
intestinal absorption and the result predicts that all the studied 
have the desired ability to absorb through the human intestine. 
AMES toxicity19 revealed from figure 1h shows that most of the 
compounds showed do not toxicity towards the AMES mutagen 
test as their values lie below the predicted value of 1 only those 
compounds whose value lies above 1 will toxicity towards 
AMES mutagenicity test. AMES mutagenicity test had been 
predicted using ADMET SAR, the result is for the test for 
carcinogen shown in figure 1i against all these studied 
phytochemicals. Predicted values lie below 1 is an indication that 
these are non-carcinogens. Even the acute oral toxicity results 
show that these compounds do not show acute oral toxicity as the 
predictive values were less than one. This result has been 
depicted in figure 1j. 

 
Prediction of Activity Spectra for Substances (PASS) analysis 

This in-silico approach explores new biological activities of 
selected phytochemicals and thus can contribute to elucidating 
various mechanisms and related side-effects associated with 
these molecules. The application of PASS prediction with natural 
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products has also been demonstrated in some research.27, 28 The 
current version of PASS predicts around 3750 different 
biological modes of action with an accuracy of 95%. 29 Twelve 
bioactive phytochemicals were chosen for PASS prediction 
analysis and the result from the anti-carcinogenic study shown in 
figure 2a revealed that ferulic acid (0.616), cinoxolone (0.575), 
curcuminoid (0.611) have a very high anti-carcinogenic activity 
which is followed by crocetin, cinnamic acid and shogaol (values 
less than 0.5). TP53 activity shown in figure 2b elucidated that 
except turmerone and diethyl phthalate (values less than 0.5), the 
rest all the bioactive compounds were showing TP53 values more 
than 0.5. A high value of TP53 expression is an indication that 
some of these compounds have a greater ability to activate the 
expression pattern of TP53, which is shown in the form of 
probability value.  As TP53 acts as tumor suppressor genes that 
play a vital role in preventing normal cells to become cancer, so 
activating these genes would lead to the stopping of a normal cell 
to become cancerous.24 

Other parameters like caspase 3 stimulant shown in figure 2c 
elucidated that cinoxolone, cinnamic acid, allicin, turmerone, and 
linalool oxide are having probability score values less than 0.5. 
A higher caspase 3 value suggests the effective role of these 
phytochemicals to activate this enzyme for undergoing apoptosis 
of cancer cells. Caspase 3 stimulant is one of the essential 
features in Pass Prediction software that initiates the process of 
cell apoptosis in the cancer-affected region.25 

The result of BRAF depicted in figure 2d suggested that out of 
all phytochemicals under study, ferulic acid, cinnamic acid, 
allicin, curcuminoid, diethyl phthalate, linalool oxide, estragole, 
and shogaol were having the least potential to behave as 
inhibitors against BRAF. BRAF plays an important role in cancer 
signaling and is now regarded as a potential biomarker of 
cancer.26 

Many phytochemicals from the chosen plant species for our 
study reveal that these can also be slightly toxic as far as cancer 
cells are concerned. Cinoxolone, crocetin, cinnamic acid, 
cinnamaldehyde. Circuminoid and linalool oxide had fewer 
probability values (less than 0.5), suggesting their behavior 
toward a toxic role (Figure 2e).  Many studied phytochemicals 
like crocetin, cinoxolone, allicin, turmerone, diethyl ether, and 
linalool oxide were having pass prediction values less than 0.5 
and thus suggest their role as non-anti-mutagenic substances 
shown in figure 2f, whereas those having higher probability score 
were regarded as anti-mutagenic.  

Molecular docking analysis 
In order to understand the binding and inhibition capability of 

all the proposed phytochemicals given in table 1, DNMT3L was 
chosen with PDB id: 2PV0. Patch Dock web server30,35 was 
chosen for the docking study. Molecular docking study reveals 
their strong binding ability with the target. Functional groups like 
the oxygen and other electronegative atoms present in the 
phytochemicals are making a hydrogen bond with the hydrogen 
atom of the amino acid residues present on the target enzyme. 
Apart from the hydrogen bonding interaction, these compounds 
also make other non-covalent interactions (NCI) with the target 
(figure S3 a-m (Supplementary file). The result of binding 

energies of the molecular docking interaction between small 
phytochemicals and DNMT3L have been shown in Table 2. 
Allicins make hydrogen bonding with GLY 236 and VAL 232 
apart from showing other non-covalent interactions (NCI) with 
LEU 193, ARG 191, LEU266, and TRP 235 (Figure S3a).  

Cinnamaldehyde makes only NCI other than hydrogen 
bonding with PHE 238, LEU 193, and LYS 219. During this 
process of interaction of the compound with the target, binding 
of -33.27 kcal/mol and -27.0 kcal/mol are released (Shown in 
figure S3a and S3b) from these compounds respectively. Even 
cinnamic acid, which is a derivative of cinnamaldehyde makes 
one hydrogen bond with VAL 184 and ARG 161 and NCI with 
LEU 144. The result is depicted in figure S3d. Cinnamyl acetate 
another derivative of the same compound makes only NCI with 
LEU 240, ILE 327, and MET 283 (figure S3f).  This compound 
does not show any hydrogen bonding with the target. The binding 
energies associated with these two compounds are -30.99 and -
36.53 kcal/mol respectively. Different isoforms of DNMT3L 
have been used as a cancer target to showcase the docking 
experiment. Similar kinds of molecular docking procedures have 
been performed for Alzheimer’s disease.32-34 

Molecular docking with Alpha terpeniol (figure S3c) from the 
plant species Elettaria cardamomum makes only NCI with LEU 
144, TRP 185, PRO 183, TYP 160, CYS 113, and CYS 145. This 
compound makes hydrogen bonding with LEU 144. LEU 144 is 
involved in various types of interaction with the phytochemical. 
The binding energy released during the process is -27.65 
kcal/mol.  

Capsaicin another useful bioactive ingredient found in the 
Piper nigram interacts with ALA 83, CYS 100, LEU 67, LEU 
164, and PRO 66 through NCI. A binding energy of -42.85 
kcal/mol is released during this process. The visualization result 
has been shown in figure S3e. This amount of binding energy is 
considered very high and proves its ability to act as a strong 
inhibitor against the target. In a similar pattern of high binding 
energy, other compounds like crocetin with a binding energy of -
49.27 kcal/mol (figure S3m), demethoxycurcumin (-48.27 
kcal/mol) shown in figure S3j, carnosic acid (-44.72 kcal/mol) 
depicted in figure S3g  have been depicted through the molecular 
docking interaction. All these phytochemicals show greater 
binding energy above (-40 kcal/mol) which shows their strength 
as strong inhibitors against DNMT3L 

Crocetin (figure S3m) is making NCI with VAL 192, MET 
283, ALA 244, VAL 285, PRO 360, VAL 364, and VAL 321. 
Valine, proline alanine, and methionine all non-polar amino acids 
form a small pocket in the interior of DNA methyl transferase 3-
like protein. The number of more interactions (seven) with the 
crocetin and also the total binding energy released during the 
docking interaction is very high (-49.27 kcal/mol). Thus the 
structure of crocetin allows it to fit properly into the groove of 
the target protein and might act as a potential inhibitor against 
DNMT3L. Similarly, demethoxycurcumin (figure S3j) also 
makes NCI with LEU 371, PHE 208, LEU 240, ILE 327, GLU 
197, and ALA 244.   

Carnosic acid interacts with PHE 208, LEU 203, ILE 199, 
MET 283, VAL 285, and VAL 364 (figure S3g) through various 
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non-covalent interactions. All the interacting amino acids are 
non-polar and reside within the core of the target protein and form 
a pocket. Thus from the docking study, it may be concluded that 
carnosic acid goes deep inside the target to form a non-covalent 
association and releases a very binding energy of 44.72 kcal/mol. 
In a similar line with crocetin, the structure of carnosic acid 
allows the molecule to fit properly into the pocket of the target 
protein.  Estragole interacts with ARG 161, PRO 183, CYS 145, 
and TRP 160.33 Estragole (shown in figure S3h) makes special 
van der Waals interaction with ARG 161 and apart from that non-
covalent interaction with PRO 183, CYS 145, TRP 160, and 
curcumin is shown in figure S3i makes non-covalent interaction 
with CYS 145, LEU 144, TRP 160, ARG 115, CYS 113, ARG 
161 and LYS 159.  Eugenol present in the plant species cinnamon 
makes two hydrogen bonds with VAL 364, and PHE 368 of the 
target and NCI with CYS 367, VAL 323, MET 283, and VAL 
285(figure S3k), similarly, ferulic acid also makes four hydrogen 
bonding with the target through amino acids, MET 283, GLY 
243, VAL 285 and VAL 364. This compound also makes various 
NCI with CYS 367 and ILE 199 (figure S3l). Based on the 
molecular docking analysis, four molecules (carnosic acid, 
capsaicin, crocetin, and demethoxycurcumin) with better binding 
affinities have been selected for further analysis. These 
molecules were taken for molecular dynamics analysis for 100 ns 
in order to understand the stability of docked complexes at the 
binding pocket of DNMT3L. 

MD simulation analysis 
Proteins are dynamic in nature, and their motion is usually 

essential for their function. The study of their dynamic behavior 
supports a deeper understanding of their structural and functional 
role. A more realistic and detailed analysis of protein motion 
requires molecular dynamics (MD) simulations. Moreover, MD 
simulations also permit an accurate interpretation of the protein-
ligand complex's mode of binding and stability. Further, MD 
simulation studies of 100 ns time were done to assess the strength 
and dynamic behavior of the selected docked complexes 
(capsaicin, crocetin, demethoxycurcumin, and carnosic acid) in 
the active site of an enzyme. After the production run, the 
generated trajectories were examined using the simulation 
interaction diagram to analyze the root mean square deviation 
(RMSD), root mean square fluctuations (RMSF), and protein-
ligand interaction behavior of each docked complex. 

The RMSD calculated by initially aligning all protein frames 
on the reference backbone frame indicated that the backbone Cα 
atoms were stable during the simulation time period with a 
deviation range of around 2-3 Å (Figure S4-a, b, c, and d). The 
MD simulation results were also employed to investigate the 
structural changes of all the protein-ligand complexes during the 
MD simulation. To reveal the structural changes, we extracted 
the structure at 100 ns simulation time of each dock complex. 

The RMSD behavior of the carnosic acid complex maintained 
a stable behavior during the entire simulation with a mean value 
of 2 Å. Initially, the complex displayed deviations up to 20ns, and 
thereafter, the trajectories stabilized. In the crocetin complex, a 
stable behavior was observed after 40 ns throughout the 
simulation time. Other complexes (capsaicin and 

demethoxycurcumin) showed unestablished behavior throughout 
the simulation. Thus, RMSD trajectory analysis of all the 
simulations reveals that amongst all the screened compounds, the 
trajectory for compound carnosic acid was the most stable with 
variations within the acceptable range followed by crocetin 
complex. Some studies using potential phytochemicals were also 
observed to show average RMSD values within the 1- 3 Å range. 
Thus, lower RMSD values of our protein-ligand trajectory also 
validated the stability of molecular docking poses. 39 The 
estimated RMSD value after superimposition was observed for 
carnosic acid (0.5 Å), crocetin (2 Å), capsaicin (2.5-3.5 Å) and 
demethoxycurcumin (3.0-3.5 Å) respectively. The compounds at 
100 ns, carnosic acid, crocetin, capsaicin, and 
demethoxycurcumin on superimposition did not reveal any 
significant conformational changes in the protein. Thus, no 
remarkable structural changes were observed in all the docked 
complexes 

We further performed root mean square fluctuations (RMSF) 
analysis of the identified hit complexes (carnosic acid, crocetin, 
demethoxycurcumin, and capsaicin,) to assess the oscillation of 
each residue from its average mean position. This indicates the 
extent of atomic variations related to the structural constancy of 
molecular interaction during simulation. Generally, a higher 
value of RMSF is observed for loops, and the terminal residues 
are considered flexible, while lower values designate a more rigid 
conformation.38,39 The complex did not reveal any significant 
RMSF changes compared to the other complexes' trajectories 
except residue range 170-180 (figure S5 a, b, c, and d). The 
RMSF plot displayed the slightest fluctuations at the binding 
pocket residue range 170-180 for all docked complexes with a 
flexible range of 1.5-4.0 Å. 

These results suggest that the complexes formed with carnosic 
acid and crocetin were robust and hence, these have been 
considered as a la lead molecule in the protein-carnosic acid 
complex, the ligand is stabilized by a hydrogen bond formed by 
residues TYR377, and hydrophobic interactions formed by ILE 
199 and LEU371 between the ligand and the protein. In the 
protein-crocetin complex, the ligand is stabilized by two 
hydrogen bonds formed by residues ASN287, and LYS358 
hydrophobic interactions formed by ILE 199 and VAL285, 
LYS354, ALA356, and ALA357 of the protein. This suggests 
that the carnosic acid and crocetin were tightly bound to the 
protein in the binding pocket. The interactions between protein 
and ligand execute a significant role in governing ligand stability. 
In a carnosic acid complex and crocetin complexes the effective 
interactions of the compound, with the catalytic residues were 
retained during the whole simulation time. These involved 
hydrogen-bonded and non-covalent interactions between the 
ligand and the protein residues (Figure S6 a, b, c, d, e, and f). The 
protein-ligand interaction plot delivers a well-designed 
conformation of the spatially tightly bound ligand in the docked 
complex at the protein binding site. The protein complexes with 
the other two ligands, capsaicin, and demethoxycurcumin did not 
showcase good stable interactions within the binding pocket as 
indicated by their higher RMSF and RMSD and diminished 
significant interactions. Thus, these were excluded from further 
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analysis. This finding also correlates with our docking and MD 
simulation results where the screened compounds were found to 
interact with key negatively charged residues of the binding site. 
All these four molecules were further taken for MM-GBSA 
analysis for further confirmation of the MD simulation study. 

Binding free energy analysis 
The binding free energy (DG) was assessed using the prime 

MM-GBSA method to reveal each ligand’s relative binding-free 
energy (DG bind) in each docked complex. Prime MM-GBSA 
estimates the energy of enhanced free protein structure, free 
ligand, and docked protein-ligand complex (ref). The MM-
GBSA-based free binding energy of the top four docked 
complexes was calculated from the trajectories spanning 70 to 
100 ns (Table 3S). The compound carnosic acid demonstrated 
free binding energy of -64.69 kcal/ mol, whereas compounds, 
crocetin capsaicin, and demethoxycurcumin showed binding 
energy of -51.85, -48.93, and -41.95 kcal/mol respectively, 
suggesting that compound carnosic acid has the highest negative 
binding affinity followed by compound crocetin. These two 
molecules were screened (carnosic acid and crocetin) from the 
selected four molecules (carnosic acid, crocetin, capsaicin, and 
demethoxycurcumin). During the interaction with DNMT3L 
(100 ns MD simulation and MM-GBSA analysis) carnosic acid 
and crocetin form the most stable complexes with the non-polar 
amino acids of the target. The study also confirms that the chosen 
target has potential sites to accommodate these compounds. 
These interactions might alter the cell’s signaling process during 
cancer initiation. 

CONCLUSION  
In order to suggest small phytochemicals from different plant 

species as anti-cancerous compounds against DNA methyl 
transferase 3-like protein, we performed molecular docking, 
molecular dynamics, free binding energy calculations, ADMET, 
and PASS analysis. Finally, based on the results of the 100 ns 
molecular dynamics simulation and the MM-GBSA binding 
energy analysis, we have filtered out carnosic acid and crocetin 
as the lead molecules against the selected cancer target. 
Consequently, it is clear that the enzyme possesses a potential 
binding pocket to accommodate smaller phytochemicals. 
Carnosic acid and crocetin both have good solubility scores as 
well as they can pass through the blood-brain barrier and cell 
membrane. Hence both these compounds seem to be proposed as 
better anti-cancerous compounds than the twelve other studied 
phytochemicals. Both being tiny natural molecules with 
diversities in the scaffolds, do not have any on the living cell, 
designing of synthetic drugs can be taken forward. 
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