Novel synthesis and Optical investigation of trivalent Europium doped MGd2Si3O10 (M = Mg2+, Ca2+, Sr2+ and Ba2+) nanophosphors for full-color displays

urn:nbn:sciencein.jmns.2019v6.109

Novel synthesis and Optical investigation of trivalent Europium doped MGd2Si3O10 (M = Mg2+, Ca2+, Sr2+ and Ba2+) nanophosphors for full-color displays

Published in Journal of Materials NanoScience

  • Suman Sheoran M.D. University
  • Sitender Singh M.D. University
  • Ajay Mann M.D. University
  • Anura Samantilleke Universidade of Minho
  • Bernabe Mani Universitat Politecnica de Valencia
  • Devender Singh M.D. University

Keywords: nanophosphors, displays, lanthanide, luminescence, composites, LED

Abstract

A series of Eu3+ doped MGd2Si3O10 (M = Mg2+, Ca2+, Sr2+ and Ba2+) was synthesized via sol-gel procedure at 950 oC. The optical characteristics of the materials were studied by Photoluminescence (PL) emission spectra. Upon 395 nm excitation and at 0.03 mole concentration of Eu3+ ion, these nanophosphors display optimum photoluminescence with most intense peak due to 5D07F2 (614-616) of dopant. Powder X-ray diffraction (PXRD) analysis proves that all synthesized materials are of crystalline nature and crystallinity improves on increasing temperature. Transmission electron microscopy (TEM) exhibited the spherical shape of particles in 13-30 nm size. Fourier Transformation infrared (FTIR) spectra showed peaks in 400-1000 cm-1 corresponding to gadolinium-oxygen and silicon-oxygen bond vibrations. In BaGd2Si3O10 material, Gd-O vibration is centered at 492 cm-1 and absorption band at 855 cm-1 is result of asymmetric vibrations of SiO in silicate tetrahedral unit. Due to excellent photoluminescence and suitable CIE coordinates, these materials could have brilliant applications in innovative displays.

Research Highlights

  • Series of trivalent europium doped MGd2Si3O10 (M = Mg2+, Ca2+, Sr2+ and Ba2+)fluorescent materials were synthesized successfully with sol-gel procedure.
  • The prepared samples were characterized using Photoluminescence analysis, X-ray diffraction study, Transmission Electron Microscopic analysis and Fourier Transform Infrared spectroscopy.
  • The CIE color coordinates values of phosphor confirmed the red color of complex approving the PL results.
  • X-ray diffraction pattern of these materials determined the particle size using Debye Scherrer’s equation.
  • Excellent photoluminescence response and nano size of these materials made them suitable for various innovative display applications.

Cite as: Sheoran, S., Singh, S., Mann, A., Samantilleke, A., Mani, B., & Singh, D. (2019). Novel synthesis and Optical investigation of trivalent Europium doped MGd2Si3O10 (M = Mg2+, Ca2+, Sr2+ and Ba2+) nanophosphors for full-color displays. Journal of Materials NanoScience, 6(2), 73-81.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/109

Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy

Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy

Published in: Journal of Materials NanoScience

urn:nbn:sciencein.jmns.2019v6.95

Running title: Rationale of designing of nanoparticular delivery systems and impact of chemistry used with doxorubicin for anti-cancer therapy

  • Bhupender S. Chhikara University of Delhi
  • Brijesh Rathi University of Delhi
  • Keykavous Parang Chapman University

Keywords: Adriamycin, Cancer Drug, CPP, Drug Delivery System, Lipophilic Dox, TAT peptide

Abstract

Doxorubicin (Dox), an antineoplastic drug, has been extensively used for the treatment of different cancers. Dox is hydrophilic and therefore distributes to normal organs at a faster rate. Due to its required high doses, it poses severe toxicity, such as cardiotoxicity and nephrotoxicity. Diverse approaches, including nanoparticulate delivery systems, have been designed and evaluated to improve its delivery to the target site and reduce toxicity to normal organs; however, this has met little success. Here in this review, we have discussed various systems (metal nanoparticles, carbon nanotubes, fullerenes, liposomes, dendrimers, cyclic peptides, and other covalent/non-covalent systems) that have been used for Dox. We have critically evaluated their designing and outcome (in vitro and in vivo) with potential applications in the clinical setting.

Cite as: Chhikara, B., Rathi, B., & Parang, K. (2019). Critical evaluation of pharmaceutical rational design of Nano-Delivery systems for Doxorubicin in Cancer therapy. Journal of Materials NanoScience, 6(2), 47-66.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/95

Chemical libraries targeting Liver Stage Malarial infection

urn:nbn:sciencein.cbl.2019v6.96

Chemical Scaffolds Targeting liver-stage malaria parasite lifecycle

Published in: Chemical Biology Letters

  • Neha Sharma
  • Poonam FNU
  • Prakasha Kempaiah
  • Brijesh Rathi University of Delhi

Keywords: Malaria, Liver stage, Primaquine, Atovaquone, Clinical trials

Abstract

Despite the noteworthy advances in the use of chemotherapy for malaria, it continues to constantly affect large number of individuals. New molecules capable of blocking life-cycle of the parasite, preferably through targeting novel pathways and various modes of action, are increasingly becoming area of interest. Phenotypic screening of large chemical libraries is certainly one of the important criteria for the discovery of new and effective drugs. In recent years, diverse research groups including pharmaceutical industries have performed this large-scale phenotypic screening to identify the potential drug molecules. Most of the antimalarial drugs target blood-stage malarial infection and remain either less potent or ineffective against other life stages i.e. liver-stage, and the gametocyte stages of the parasite. Although, liver stage is considered as a crucial drug target, limited clinical options have significantly hampered the discovery of effective treatments. This short review presents the collection of selective molecules targeting specifically liver stage malaria parasites.

Cite as: Sharma, N., FNU, P., Kempaiah, P., & Rathi, B. (2019). Chemical libraries targeting Liver Stage Malarial infection. Chemical Biology Letters, 6(1), 14-22.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/cbl/article/view/96

Synthesis, DNA photocleavage, molecular docking and anticancer studies of 2-methyl-1,2,3,4-tetrahydroquinolines

urn:nbn:sciencein.cbl.2019v6.97

Published in: Chemical Biology Letters

  • P.J. Bindu Kuvempu University
  • T. R. Ravikumar Naik Indian Institute of Science
  • K.M. Mahadevan Kuvempu University
  • G. Krishnamurthy Sahyadri Science College

Keywords: Anti-oxidant, photodynamic therapy, DNA-Drug, tetrahydroquinolin

Abstract

2-Methyl-1,2,3,4-tetrahydroquinolin-4-yl)pyrrolidin-2-ones (3a−g) were synthesized by one pot multicomponent aza Diels-alder reaction between N-arylimines with two molecules of N-vinyl-2-pyrrolidinone in presence of Sm(III)nitrate as catalyst in acetonitrile solvent at room temperature stirring. The photocleavage studies with 2-methyl-1,2,3,4-tetrahydroquinolin-4-yl)pyrrolidin-2-ones (3a−g) revealed that almost all derivatives exhibited effective photocleavage of pUC−19 DNA at 365 nm, The The anticancer activities of newly synthesized compounds (3a−g) were more potent than doxorubicin on MCF−7 cells. The docking of PBR receptor (1EQ1) protein with newly synthesized THQ’s (3a-g) exhibited well established bonds with one or more amino acids in the receptor active pocket.

How to Cite Bindu, P., Naik, T. R. R., Mahadevan, K., & Krishnamurthy, G. (2019). Synthesis, DNA photocleavage, molecular docking and anticancer studies of 2-methyl-1,2,3,4-tetrahydroquinolines. Chemical Biology Letters, 6(1), 8-13.

Retrieve Full text from http://pubs.thesciencein.org/journal/index.php/cbl/article/view/97

Pharmacy periodicals in India – a review by research

by Prof. Anant Hardas

Published in Journal of Biomedical and Therapeutic Sciences BiomedFrontiers section (Print)

The first issue of Pharmacy Journal in India – The Indian Journal of Pharmacy was published in Dec 1894, however it was defunct after 3 years. The Modern Pharmaceutical Journalism in India was Pioneered by Mr. Premnath Bazaz, who started the Eastern Pharmacist in 1958 and equal contribution was by Dr. A.K. Patni, who edited Indian Drug since its inception published by IDMA. Today there are nearly 175 Pharmacy Journal published in mostly English (and also in Marathi, Hindi & Bengali) by 5 different categories of publishers in India. The PCI has set out official Journals – seven – for D. Pharm Course and 20 for B. Pharm Degree Course, and minimum 2 international Journals for each discipline of specialization at M. Pharm, Ph.D and Pharm. D Courses structure in India. This article brings out short History and progress of Indian Pharmacy Periodical as on today.

Improved electrochemical performance of free standing electrospun graphene incorporated carbon nanofibers for supercapacitor

urn:nbn:sciencein.jmns.2019v6.94

Improved electrochemical performance of free standing electrospun graphene incorporated carbon nanofibers for supercapacitor

Published in Journal of Materials NanoScience

  • Dipti V Jamkar Rashtrasant Tukadoji Maharaj Nagpur University
  • Balkrishna J. Lokhande Solapur University
  • Subhash B. Kondawar Rashtrasant Tukadoji Maharaj Nagpur University

Keywords: Carbon nanofibers, graphene, electrospinning, electrochemical performance, supercapacitor

Abstract

In this paper, we report the fabrication of carbon nanofibers (CNFs) by electrospinning of polyacrylonitrile (PAN) solution in N,N-dimethylformamide (DMF)with different concentrations followed by stabilization and carbonization in a tubular quartz furnace. To improve the electrochemical performance, graphene nanosheets have been used to prepare porous graphene/carbon nanofibers (G-CNFs). The morphology of the porous G-CNFs were characterized by means of scanning electron microscopy (SEM). Diameter of CNFs and G-CNFs were found to be in the range of 400 – 500 nm reveals the fibers in nanoscale with high porosity. The electrochemical performance of as-synthesized CNFs and G-CNFs was studied by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy. The CV curve of the pure CNFs show distorted rectangular shape whereas CV curve of G-CNFs exhibit a nearly rectangle-shaped profile which is the characteristic of an ideal electric double-layer capacitor. The improved electrochemical performance of G-CNFs is due to the improved internal electrical conductivity of G-CNFs via graphene nanosheets interlaying.

Jamkar, D., Lokhande, B., & Kondawar, S. (2019). Improved electrochemical performance of free standing electrospun graphene incorporated carbon nanofibers for supercapacitor. Journal of Materials NanoScience, 6(1), 32-37.

Retrieved full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/94

Recent advances in metal nanoparticles supported on Montmorillonite as catalysts for organic synthesis

Recent advances in metal nanoparticles supported on Montmorillonite as catalysts for organic synthesis

urn:nbn:sciencein.jmns.2019v6.87

Published in Journal of Materials NanoScience

  • Dipak Kumar Dutta
    CSIR-North East Institute of Science and Technology, Materials Sciences and Technology Division, Jorhat 785006, Assam

Keywords: Metal-Nanoparticles, Supported Catalysts, Heterogeneous Catalysts, Organic Synthesis

Abstract

Nanostructured materials has appealed considerable attention due to their characteristic properties and applications in different fields. Metal nanoparticles supported on modified montmorillonite composites have led to the generation of new and novel heterogeneous ‘Nanocatalysts’, which are much more efficient than other catalysts and thus pave the way for developing sustainable environmentally benign catalysis and chemical procedures. Such nanocatalysts are progressing towards their use in chemical industries. This review presents the recent trend of advances in the synthesis and catalytic reactions of supported metal nanoparticles on acid activated montmorillonite. Metals nanoparticles-montmorillonite composites show efficient catalytic activities with high conversions and selectivity for hydrogenation, transfer hydrogenation, oxidations and coupling reactions. Raw montmorillonite possess no catalytic activity, however acid activated montmorillonite exhibits excellent acid catalytic activities.

Dutta, D. (2019). Recent advances in metal nanoparticles supported on Montmorillonite as catalysts for organic synthesis. Journal of Materials NanoScience, 6(1), 19-31.

Retrieve full text from http://pubs.thesciencein.org/journal/index.php/jmns/article/view/87

Formulation optimization of multicomponent aqueous coground mixtures of Meloxicam for dissolution enhancement

urn:nbn:sciencein.cbl.2019v6.93
Formulation optimization of multicomponent aqueous coground mixtures of Meloxicam for dissolution enhancement
Multicomponent coground mixtures of meloxicam

Published in Chemical Biology Letters

  • Sunita Dahiya University of Puerto Rico
  • Atul Kaushik
  • Kamla Pathak

Keywords: factorial design, solubility, drug delivery, hyrophilicity, PEG

Abstract

In present work, the role of various formulation excipients for dissolution enhancement of a BCS Class II drug, meloxicam was studied by formulating multicomponent aqueous coground mixtures using lactose, microcrystalline cellulose and three solubilizers; polyethylene glycol 400, propylene glycol and polyvinyl pyrrolidone. A 33 full factorial design was employed using solubilizers’ concentrations as independent variables whereas angle of repose and in vitro drug dissolution as dependent variables in order to optimize the amounts of solubilizers. The results revealed more than fivefold increase in drug dissolution in some experimental batches compared to that of pure drug powder. Full and reduced models were evolved for the dependent variables and the reduced models were further validated using extra design check points. The studies suggested that the incorporation of optimized amounts of solubilizers could be successfully employed for achieving desired flow properties and enhanced drug dissolution of poorly water soluble meloxicam. The method emerged as a simple, cost-effective, and organic solvent-free green approach toward formulation development of meloxicam and may also be applied to other limited water-soluble drugs.

Dahiya, S., Kaushik, A., & Pathak, K. (2019). Formulation optimization of multicomponent aqueous coground mixtures of Meloxicam for dissolution enhancement. Chemical Biology Letters, 6(1), 1-7.

Full text link http://pubs.thesciencein.org/journal/index.php/cbl/article/view/93

Antidiabetic effect of Carissa carandas in rats and the possible mechanism of its insulin secretagogues activity in isolated pancreatic islets

urn:nbn:sciencein.jbts.2019v6.90

Antidiabetic effect of Carissa carandas in rats and the possible mechanism of its insulin secretagogues activity in isolated pancreatic islets

  • Rambir Singh Bundelkhand University
  • Mansi Shrivastava Bundelkhand University
  • Poonam Sharma Indira Gandhi National Tribal University

Keywords: Antidiabetic, Solvent Extract, Insulin, Plant fruits, phytochemicals, diabetes

Abstract

Carissa carandas (CC) has been used in folklore medicine for treatment of diabetes. In the present study, hexane, chloroform, ethyl acetate, methanol and aqueous extracts of CC fruit were examined for hypoglycemic activity in healthy Wistar rats. Aqueous Extract of CC (AECC) was most active and showed fall of 67.08% in fasting blood glucose from 0 to 1h in glucose tolerance test (GTT). The ED50 of AECC was 300mg/kgbw in streptozotocin induced diabetic rats. Treatment of diabetic rats with ED50 of AECC for 28 days significantly reduced post prandial glucose (PPG) by 33.65% (p<0.01), glycosylated hemoglobin (HbA1c) by 45.79% (p<0.01) and increased insulin level by 69.7% (p<0.05). The results indicated that increase in insulin secretion may be partly responsible for antidiabetic effect of AECC. To assess the mechanism of secretagogues activity, AECC was incubated with isolated pancreatic islets of healthy Wistar rats at basal (3.3mM) and high (16.7mM) level of glucose in presence or absence of Diazoxide (K-ATP channel opener), Nimodipine (Ca2+ Channel blocker) and Calphostin-C (PKC inhibitor). AECC induced insulin secretion at 16.7mM of glucose was significantly (p<0.01) reduced by Diazoxide and Nimodipine but non significantly (p>0.05) by Calphostin-C. The study indicated that the phytochemicals present in AECC may be inducing insulin secretion by closing K-ATP channels in β-cells of pancreatic islets.

Full text link: http://pubs.thesciencein.org/journal/index.php/jbts/article/view/90

Nanochemistry and Nanocatalysis Science: Research advances and future perspective

urn:nbn:sciencein.jmns.2019v6.88

Nanochemistry and Nanocatalysis Science: Research advances and future perspective

Bhupender S. Chhikara, Rajender S. Varma

The development of nanomaterials has made its mark in nanocatalytic applications and ensuing plethora of nanotechnological advances. The size-dependent chemistry of nanomaterials and consequent controlled and designed synthesis of smart materials with desired end application has provided us a number of new products recently which are already making impact on quality of human life. The fundamental nano paradigm shift would influence future research advances in field of nanoscience chemistry, ranging from drug delivery to exquisite designs of novel catalysts that drive innovations in chemical synthesis and transformations.  The nanoscience is an interdisciplinary field that will see increased role in the diverse and emerging newer areas like artificial intelligence; nanochemistry would help speed up the development of applications in the real world with artificial intelligence.

Full text link: http://pubs.thesciencein.org/journal/index.php/jmns/article/view/88